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1 Introduction
Specific emitter identification (SEI), which refers to the use of existing a priori informa-
tion to achieve the identification of an individual generating a signal based on its unique 
characteristics, has been widely studied in cognitive radio [1], self-organizing networks 
[2], physical layer reliability [3] and the Internet of Things (IoT) [4]. It has gained recog-
nition as a pivotal technology with significant applications in both civilian and military 
sectors [5, 6].

In the traditional SEI scheme, the system is typically divided into the two parts: 
signal radio frequency fingerprint (RFF) extraction and classification. Signal extrac-
tion can be classified into transient-based and steady-state-based methods. Transient 
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signals typically manifest during device state transitions, whereas steady-state sig-
nals characterize the transmitter’s stable operational state [7]. The former has a short 
duration and is difficult to be extracted accurately. In addition, transient signal-based 
SEI relies heavily on basic characteristics. Steady-state signals, on the other hand, 
provide relatively more stable RFF features and are more suitable due to their long 
duration and low acquisition cost. Integral bispectrum, wavelets, and the Hilbert 
Huang transform (HHT) [8–11] are widely used in steady-state signal processing. 
The classification part is to develop appropriate classifiers to achieve accurate iden-
tification of target radiation sources using discriminative RFF. Reising [12] and Wil-
liams [13] applied Multiple Discriminative Analysis/Maximum Likelihood (MDA/
ML) classifiers for feature classification. Brik [14] pioneered the implementation of 
the Support Vector Machine (SVM) classifier. In [15], SVM utilizes features extracted 
through Empirical Modal Decomposition (EMD) to accomplish classification. In [16], 
a feature vector neural network was constructed using pulse signal parameters. How-
ever, it has some limitations in data mining.

Nowadays, deep learning (DL) has garnered significant interest across various promi-
nent domains and proved to be effective in various applications. The performance has 
been improved compared to traditional techniques. A novel long-tail SEI method is 
proposed in [17], employing decoupled representation (DR) learning. In [18],to over-
come data limitations, propose a few-shot SEI (FS-SEI) method based on self-supervised 
learning and adversarial augmentation. Yao et al. in [19]proposed the use of asymmet-
ric mask auto-encoder (AMAE) with few-shot to solve the few-shot problem. Recently, 
some scholars have also studied pruning techniques to lighten models and accelerate the 
inference speed of SEI [20, 21].In recent years, research in this area has also been devel-
oping in the direction of resource optimization [22, 23].

One of the keys to using DL methods is the necessity for a substantial volume of 
labeled data to train the model and the data is independently and identically distributed. 
However, in real complex environments, acquiring a substantial number of labeled sam-
ples poses a formidable challenge. Therefore, classifying unknown data based on a small 
number of samples and improving the generalization and robustness of the model have 
become a key challenge [24]. Transfer learning(TL), which aims at extracting knowledge 
from the source tasks and applying the knowledge to the target task [25], is regarded as a 
reliable solution for SEI [26–28]. Unsupervised Domain Adaptation (UDA) is a subcate-
gory of TL, it does not require labeled data from the target domain. Therefore, the use of 
unsupervised domain adaptation technique for radiation source individual identification 
can effectively address the issue of limited availability of labeled samples. Unsupervised 
adaptive methods are subdivided into two categories: self-training-based and adversarial 
learning-based. The former utilizes pseudo-labels to provide supervised information, 
while the latter aligns the source and target domain distributions. In complex environ-
ments, the pseudo-labels are of poor quality and cannot be accurately domain-aligned, 
the domain adaptation technique utilizing adversarial training can enhance the model’s 
adaptation to the target domain’s data distribution and enhance the model’s generali-
zation performance by acquiring the feature mapping between the source and target 
domains. This has inspired more and more researchers, including us, to devote them-
selves to exploring SEI based on adversarial domain adaptation.
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In this paper, we propose a method for SEI using ensemble domain adversarial neu-
ral network. The method consists of a domain adversarial neural network based on 
the transformer encoder and a classifier based on ensemble learning. Specifically, the 
former adds a transformer encoder after the feature extraction layer of the domain 
adversarial neural network, so that the features extracted obey Gaussian distribution 
after passing through the encoder, which is conducive to feature alignment. The latter 
utilizes the ensemble learning method of aggregate the outcomes of numerous weak 
learners to improve recognition performance. This article makes the following princi-
pal contributions.

• This paper proposes a method of ensemble domain adversarial neural network for 
specific emitter identification. We creatively add a transformer encoder based on 
the domain adversarial neural network to make the extracted features obey Gauss-
ian distribution.

• Using ensemble learning methods to combine multiple weak classifiers into one 
strong classifier. Adopting a combination strategy of weighted voting method, 
each weak learner is assigned different weights to improve the quality and accu-
racy of decision-making.

• Comprehensively consider the signal transmission environment, construct three 
channel environments: Alpine–Montane Channel, Plain-Hillock Channel, and 
Urban-Dense Channel, simulate different signal transmission situations, and 
reflect the differences in transfer environments.

• Evaluating the method proposed in this article to migration on WiFi data sets 
in three environments: Alpine–Montane Channel, Plain-Hillock Channel, and 
Urban-Dense Channel, and compared with six methods. The simulation results 
demonstrate that the method proposed in this paper attains state-of-the-art rec-
ognition performance.

The remainder of this article is organized as follows. Section 2 introduces the system 
model, signal model, channel model and problem description. Section 3 explains the 
method proposed in this paper in detail. Section 4 analyzes the experimental results. 
Section 5 draws conclusions.

2  System model, signal model, channel model and problem formulation
2.1  System model

This article mainly implements individual recognition of WiFi signals in different 
environments. The SEI system used for identification of different WiFi transmitters 
is shown in Fig. 1. It mainly consists of three parts: data generation, data reception 
and preprocessing, and model training. The data generation department consists 
of 7 different WiFi signal transmitters, and then performs signal attenuation opera-
tions through a channel simulator, and finally consists of three channel environments 
of Alpine–Montane Channel, Plain-Hillock Channel, and Urban-Dense Channel 
through mathematical modeling. SM200B is used to receive signals, and perform sig-
nal detection and preprocessing operations. Data preprocessing steps include signal 
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denoising, signal filtering and signal normalization. The data is then fed into model 
training, and finally the signals are individually identified.

Considering the differences in the three channel environments, it is difficult to deploy 
the model trained with data collected from the original channel environment to the new 
channel environment. Specifically, there are at least two issues with rapid deployment: (1) 
Obtaining a substantial volume of labeled data for updating models in new channel envi-
ronments is a challenging endeavor; (2) The model trained in the original environment 
exhibits limited generalization capabilities in the new environment. Therefore, in the case 
of significant differences between the two domains and limited data samples, ensemble 
adversarial domain adaptation is used to achieve SEI.

2.2  Signal model

A WiFi signal is a radio wave whose frequency is usually around 2.4–5 GHz. Its signal wave-
form is shown in Fig. 2. The WiFi signal emitted by the Kth device can be described using 
the following formula.

where rk(t) represents the received WiFi signal, sk(t) stands for the transmitted WiFi 
signal, hk(t) represents the channel response, which characterizes the influence of the 

(1)rk(t) = sk(t) ∗ hk(t)+ nk(t), k = 1, 2, . . . ,K

Fig. 1 The system structure of WiFi individual identification

Fig. 2 WiFi signal waveform
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signal in the frequency domain when the signal is transmitted from the sending end to 
the receiving end through the channel. This typically includes multipath propagation, 
fading, and other channel characteristics, nk(t) denotes the channel noise, which is due 
to random interference introduced by the environment and communication equipment.

2.3  Channel model

In communication systems, there may be various types of interference in the channel, 
which can affect the transmission and reception of signals. Taking into account the noise 
interference, fading, and path loss in the channel, we model three channel environments: 
Alpine–Montane Channel, Plain-Hillock Channel, and Urban-Dense Channel. The gen-
eral formula for path loss is

where L is the path loss, L0 is a constant, � is the path loss coefficient, d is the distance, 
and σ is the standard deviation of Gaussian random variables. randn usually refers to 
random numbers drawn from the standard normal distribution. The following is an 
introduction to the three channel environments.

2.3.1  Alpine–Montane channel model

In the Alpine–Montane Channel model, set L0 for 40, � for 3, d for 100, and σ for 4. Add-
ing Rayleigh fading, the probability density function(PDF) of the Rayleigh distribution is:

where r represents the value of a random variable. σ 2 It is a scale parameter of the dis-
tribution, which controls the degree of diffusion of the distribution. Finally add path loss 
and the channel model after Rayleigh fading as follows:

where yAlpine_Montane represents the signal output after passing through the Alpine–
Montane Channel channel model, x is the transmission signal, rayleigh is Rayleigh fad-
ing, and n represents additive white Gaussian noise (AWGN).

2.3.2  Plain‑Hillock channel model

In the Plain-Hillock Channel channel model, set L0 for 35, � for 2.8, d for 100, and σ for 
3.5. Then add path loss and the channel model after Rayleigh fading as follows:

where yPlain_Hillock represents the signal output after passing through the Plain-Hillock 
Channel channel model, x is the transmission signal, rayleigh is Rayleigh fading, and n 
represents AWGN.

(2)L = L0+ 10 ∗ � ∗ log10(d)+ σ ∗ randn

(3)fR(r) =
r

σ 2
e
− r2

2σ2 , r > 0

(4)yAlpine_Montane = x ∗ 10−
L
20 . ∗ rayleigh+ n

(5)yPlain_Hillock = x ∗ 10−
L
20 . ∗ rayleigh+ n
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2.3.3  Urban‑Dense channel model

In the urban channel model, set L0 for 45, � for 3.5, d for 100, and σ for 6. Then add Rice 
fading, the PDF of the Rice distribution is:

where r is a random variable, � is a scale parameter, alpha is the non central parameter of 
the distribution, and I0(·) is the modified Bessel function. The final signal output formula 
is:

where yUrban_Dense is the signals after urban offense and defense channels, x is the trans-
mission signal, rice is rice fading, and n represents AWGN.

2.4  Problem formulation

In this article, x represents the input signal sample, which comprises an IQ for-
mat signal from the RF device; y corresponds to the category of the respective RF 
device.D = (x1, y1), . . . , (xn, yn)  represents a dataset containing WiFi signal samples 
and corresponding labels. X  represents the sample space, Y represents category space. 
P(y | x) represents the conditional probability distribution, P(x, y) represents the joint 
probability distribution.

2.4.1  SEI problem

The SEI problem can be expressed as maximum a posterior probability (MAP) problem, 
which solves by comparing the posterior probabilities of different categories to find the 
category with the maximum posterior probability. In individual recognition problems, 
this can be understood as finding the category of individuals most likely to correspond 
to the given data, represented by the following formula

where fS(·) represents the mapping function, WS represents the hyperparameter set, and 
ŷ represents the predicted result. The objective of SEI is to determine optimal hyperpa-
rameters W ∈ W to achieve mapping from data space X  to label space Y . And minimize 
the expected error εex as follows

where L(ŷ, y) represents the loss compared to the real category and the predicted cat-
egory. Usually P(x,y) is unknown, and the minimum empirical error εem is usually used to 
replace εex , which can be represented as follows

(6)fL(r) =
2r

σ 2
e
− r2+α2

σ2 I0

(

2αr

σ 2

)

(7)yUrban_Dense = x ∗ 10−
L
20 . ∗ rice + n

(8)ŷ = arg max
y∈Y

fS(y|x;WS)

(9)min
WS∈W

εex = min
WS∈W

E(x,y)∼P(x,y)L(ŷ, y)

(10)min
WS∈W

εem = min
WS∈W

E(x,y)∼DL(ŷ, y)
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2.4.2  Adversarial domain adaptation for SEI problem

Adversarial domain adaptation is an UDA method, where we define the dataset of the 
source domain as DS =

{

(xs1, y
s
1), . . . , (x

s
n, y

s
n)
}

 and the dataset of the target domain as 
DT =

{

xt1, . . . , x
t
n

}

 , the target domain has no label. The task is to find the target pre-
diction function f (·) through xs , ys and xt to predict the label.

In a cooperative scenario, the data in the DS and DT are independent and the dis-
tribution is the same for both. In this situation, we learn PS(y | x) through xs and ys 
to build a classifier that is also similar to PT (y | x) , and the test effect in the target 
domain is also very good. However, in non-cooperative scenarios, the two are in dif-
ferent distributions. At this point, we only use xs and ys to learn the classifier con-
structed by PS(y | x) is different from PT (y | x) , and the adaptability on the target 
domain is relatively poor. Therefore, the adversarial domain adaptation method intro-
duces xt and trains together with xs and ys , alleviating the difference in domain adap-
tation and increasing the generalization performance.

3  The method proposed in this article
3.1  Overview of the framework

The overall framework is shown in Fig.  3. Firstly, bootstrap sampling is performed 
on the labeled source domain and unlabeled target domain data to obtain N different 
sampling sets. Then, a weak classifier is used, where we use a domain adversarial neu-
ral network (DANN). And it has been improved by adding a transformer encoder to 
the feature extractor, which can better align features and provide deeper transferable 
features. Add a Gradient Reverse Layer (GRL) to achieve the classifier and domain 
discriminator backpropagation optimize the gradient in the direction of optimizing 
the classifier’s performance. This can meet the needs of both discriminators and clas-
sifiers simultaneously. Finally, the results are integrated through a weighted voting 
method.

Fig. 3 Overview of the proposed E-DANN method
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3.2  Dataset sampling

Bootstrap sampling is a widely utilized random sampling method in statistics and 
machine learning. It mainly involves estimating population parameters, construct-
ing confidence intervals, and conducting hypothesis testing. Its main idea is to extract 
multiple self-service samples from the original samples by putting them back, and then 
perform statistical analysis on these self-service samples. Here are the detailed steps of 
Bootstrap sampling: 

1. Original Dataset: First, there’s an original dataset with n observation samples, which 
can be data points obtained from experiments, surveys, or data collection.

2. Sampling with Replacement: Bootstrap sampling generates multiple random samples 
of size n from the original dataset. This is done with replacement, meaning that in 
each sampling, the same sample can be selected multiple times, while others may 
not be selected at all. This process simulates independent repeated random sampling 
from the population. The probability of each data not being sampled is: 

Bootstrap sampling is highly advantageous for dataset sampling within this work, pri-
marily because of its independence from data distribution assumptions. This versatility 
makes it suitable even for non-normally distributed data. By generating multiple Boot-
strap samples, it facilitates uncertainty estimation by enabling the calculation of vari-
ance and confidence intervals, providing valuable insights into estimate uncertainty. This 
adaptability extends to estimating statistical parameters, conducting hypothesis tests, 
constructing confidence intervals, and supporting ensemble methods such as Bagging in 
machine learning. In summary, Bootstrap sampling serves as a powerful statistical tool, 
adept at estimating parameters and managing uncertainty without being confined by 
data distribution or assumptions. These attributes make it a well-suited choice for data-
set sampling, as discussed in this work.

3.3  Domain adversarial neural network based on transformer encoder

Domain adversarial neural network (DANN) is a deep learning method used to solve 
domain adaptive problems. The main idea behind DANN is to reduce distribution dif-
ferences between different domains through adversarial training, thereby improving the 
model’s generalization ability. Compared with the generation of confrontation network, 
the difference between them that the samples in the target domain are fake samples 
in the generation of confrontation network. Therefore, the feature extractor in DANN 
mainly plays a role of feature extraction. It mainly extracts common transferable features 
between the two domains, the features learned by the discriminator are very similar and 
cannot be distinguished accurately, and the discriminative ability of the discriminator 
is continuously enhanced, to achieve better classification performance. In addition, a 
transformer encoder is added to the feature extraction network to extract the contextual 
correlation of signals and learn deeper transferable features. The network architecture is 
shown in the weak classifier in Fig. 3, which mainly consists of the following four parts:

(11)p = lim
n→+∞

(1−
1

n
)n =

1

e
≈ 0.368
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• Feature extractor: It mainly consists of a basic CNN network for feature extraction 
for label predictors to optimize classification performance and domain discrimina-
tors to optimize discrimination performance.

• Transformer encoder: Embed the extracted features and add position information, 
then make a residual connection with the new vector generated by the multi-head 
self-attention layer, and finally pass through the feed forward neural network.

• Label predictor:As far as possible to separate the correct label.
• Domain classifier: Distinguish as much as possible from which domain the extracted 

transferable features come from.

The original I/Q signal is first passed through the feature extractor, and then the trans-
ferable features are extracted by the transformer encoder, finally classified through the 
label predictor. Adding a GRL can achieve the effect of confrontation. The domain clas-
sifier is trained to maximize its errors between the source and target domains, effec-
tively forcing the features to become indistinguishable across domains. This is achieved 
by minimizing a specific loss function, often referred to as the Domain Adversarial Loss. 
Below is the calculation of the domain adversarial loss function.

For the label predictor, softmax as an activation function, its output is:

Among them, V represents the weight matrix. c represents the bias parameter. When a 
given data point (xi, yi) , The loss of the label predictor is:

Therefore, on the source domain, our training optimization goal is:

Among them, Li
y represents the label prediction loss of the ith sample, � is an artificially 

set regularization parameter, W represents the weight matrix, b represents the bias vec-
tor, and � · R(W,b) can reduce the phenomenon of over-fitting.

The core of DANN is the domain discriminator, sigmoid as an activation function, its 
output is:

Among them, u represents a set of network parameters. Then, the domain discriminator 
loss Gd(·) is defined as follows:

Among them, di represents which domain the sample comes from. At this point, the 
optimization objective of the domain discriminator is:

(12)Gy

(

Gf (x);V, c
)

= softmax(VGf (x)+ c)

(13)Ly

(

Gy

(

Gf (xi)
)

, yi
)

= log
1

Gy(Gf (x))
yi

(14)min
W,b,V,c

=

[

1

n

n
∑

i=1

Li
y(W,b,V, c)+ � · R(W,b)

]

(15)Gd

(

Gf (x);u, z
)

= sigm
(

u⊤Gf (x)+ z
)

(16)
Ld

(

Gd

(

Gf (xi)
)

, di
)

= di log
1

Gd

(

Gf (xi)
) + (1− di) log

1
Gd

(

Gf (xi)
)
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The total loss of the trained network mainly composed of label predictor loss (source 
domain) and domain discriminator loss (source domain, target domain). So we get the 
total objective function as:

Among them, during training, the parameter optimization of label predictor and domain 
discriminator can be achieved by minimizing and maximizing objective functions 
respectively.

3.4  Combining strategies

In the prediction of classification problems, the commonly used method is to combine 
weak classifer using a voting strategy. This involves voting on the output results of each 
weak classifer to determine the final prediction of the classifier. The combination strat-
egy adopted in this article is the weighted voting method. It assigns different weights to 
each weak classifer, where each weak classifier’s prediction is multiplied by a weight. The 
final category is determined by summing the weighted votes for each category, and the 
category with the highest cumulative score is designated as the final category. The math-
ematical expression for the weighted voting method is as follows.

where H(x) is the weighted voting result, and hji(x) is the predicted probability result of 
the i-th learner for the j-th class, wi is the weight of the i-th learner.

In addition, there is a majority voting method, where the absolute majority voting 
method requires that the predicted number of votes for the category must exceed half 
of the total, while the plurality voting method selects the highest number of votes as the 
final output result. Below is the mathematical expression for the plurality voting method.

where H(x) is the plurality voting result, and hji(x) is the predicted probability result.
The plurality voting method is suitable when there is little difference in the recogni-

tion of a single learner and there is no prior knowledge indicating that a certain learner 

(17)
R(W,b) = maxu,z

[

− 1
n

n
∑

i=1

Li
d(W,b,u, z)

− 1
n′

N
∑

i=n+1

Li
d(W,b,u, z)]

]

(18)

E(W,V,b, c,u, z) = 1
n

n
∑

i=1

Li
y(W,b,V, c)

−�

(

1
n

n
∑

i=1

Li
d(W,b,u, z)

+ 1
n′i

N
∑

i=n+1

Li
d(W,b,u, z)

)

(19)H(x) = carg max
j

T
∑

i=1

wih
j
i(x)

(20)H(x) = arg max
j

T
∑

i=1

h
j
i(x)
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is more important. The weighted voting method is suitable for learners with different 
performances.

3.5  Algorithm process

Algorithm 1 describes the overall training process of the method proposed in this arti-
cle. Firstly, the dataset is sampled using bootstrap sampling. During training, parame-
ters are updated in the opposite direction of the gradient as per Eq. 18 for minimization 
and in the direction of the gradient for maximization. In words, the neural network and 
the domain regressor engage in an adversarial competition, striving to optimize the 
objective function defined in Eq. 18. Finally, a combination strategy of weighted voting 
method is adopted for the training results.

Algorithm 1 Training of the proposed model. 

4  Experiment
4.1  Dataset description

We used the data collected by the proposed system to validate the identific performance 
of the SEI method, which is a WiFi signal similar to that collected in real Alpine–Mon-
tane Channel, Plain-Hillock Channel, and Urban-Dense environments. We denoise, 
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filter, and normalize the collected signals, and then merge them into IQ channels to 
achieve the data format required for the experiment. The signal length is 2048 sampling 
points, with a total of 7 types of WiFi signals. The size of the source domain training 
dataset is 7000, the size of the target domain training dataset is 7000, the size of the vali-
dation dataset is 4200, and the size of the test dataset is 2800.

4.2  Baseline

We conducted a comparative analysis between the proposed E-DANN method and six 
other existing methods. Among them, we use convolutional neural networks (CNN) as 
the backbone network, and Table 1 provides an introduction to CNN related structures. 
The following is an introduction to the other six methods.

• Transfer component analysis (TCA) [29]: Perform marginal distribution alignment.
• Manifold embedded distribution alignment (MEDA) [30]: This represents the initial 

endeavor to implement dynamic distribution alignment in manifold domain adapta-
tion.

• Domain adversarial neural networks (DANN) [31]: Achieve efficient domain transfer 
by enhancing it with a small number of standard layers and new gradient inversion 
layers.

• Dynamic adversarial adaptation network (DAAN) [32]: The conditional domain dis-
criminant block and integrated dynamic adjustment factors are introduced.

• Adversarial discriminative domain adaptation (ADDA) [33]: Combines discrimina-
tive modeling, unrestricted weight sharing, and GAN loss.

Fig. 4 Recognition effects under three channel environments

Table 1 Performance comparison of different domain adaptation methods

Methods Alpine–
Montane to 
Plain-Hillock 
(%)

Alpine–
Montane to 
Urban-Dense 
(%)

Plain-Hillock 
to Alpine–
Montane (%)

Plain-Hillock 
to Urban-
Dense (%)

Urban-Dense 
to Alpine–
Montane (%)

Urban-Dense 
to Plain-
Hillock (%)

TCA 66.60 66.84 66.74 63.2 63.96 61.09

ARDA 79.91 75.31 79.95 76.79 85.50 79.53

ADDA 80.39 76.45 84.60 77.14 78.60 82.74

DAAN 86.25 83.54 90.42 83.42 87.75 87.89

DANN 89.85 86.50 91.16 86.57 91.12 89.53

E-DANN(ours) 92.89 90.32 94.53 91.00 94.39 92.35
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• Adversarial representation domain adaptation(ARDA) [34]: This method measures 
distribution divergence by introducing Wasserstein GAN.

4.3  Recognition performance in different channel environments

In the first half of this article, three channel models were introduced, and the recogni-
tion performance of SEI largely depends on the channel environment. Therefore, this 
experiment verifies the recognition performance of SEI in three channel environments, 
using the backbone network CNN. The experimental results are depicted in Fig. 4.

Draw a confusion matrix based on the recognition results. The rows of the confusion 
matrix represent the actual categories and the columns represent the predicted catego-
ries of the model. The diagonal elements of the confusion matrix represent the number 
of samples correctly classified by the model, while the off-diagonal elements represent 
misclassifications by the model. The accuracy can be calculated from the value of the 
confusion matrix, which is the ratio of the number of correctly classified samples to 
the total number of samples. The matrix has the lowest degree of chaos in the Alpine–
Montane channel environment, with an accuracy rate of 94.55%. In the Plain-Hillock 
channel environment, the accuracy rate is 91.21%, and in the Urban-Dense channel 
environment, the degree of matrix chaos is the highest, with an accuracy rate of 88.08%. 
Because there are fewer buildings and flat terrain in a Alpine–Montane Channel envi-
ronment, it is less prone to reflection or diffraction, resulting in fewer multipath effects 
and relatively less noise interference. In Plain-Hillock Channel environment, there are 
not many obstacles or height differences, and there are moderate multipath effects and 
noise interference. There are many obstacles in the Urban-Dense environment, which 
can cause signal reflection and multipath effects, and there is a lot of noise interference 
in the Urban-Dense Channel. From this, it can be seen that our simulated channel envi-
ronment is similar to the real channel environment, with significant differences among 
the three channel environments, which sets a good experimental scenario for the subse-
quent transfer experiment.

4.4  Performance comparison of different transfer methods

A model trained in one channel environment and tested in another channel environ-
ment often does not perform well, which requires domain adaptation technology to 
solve. Therefore, it is necessary to verify the effectiveness of specific emitter recognition 
under different domain adaptation methods. Based on recognition experiments in dif-
ferent channel environments, we observed the differences in the three channel environ-
ments of Alpine–Montane Channel, Plain-Hillock Channel, and Urban-Dense Channel. 
Therefore, we have set up six different migration scenarios, including Alpine–Montane 
Channel to Plain-Hillock Channel, Alpine–Montane Channel to Urban-Dense Channel, 
Plain-Hillock Channel to Alpine–Montane Channel, Plain-Hillock Channel to Urban-
Dense Channel, Urban-Dense Channel to Alpine–Montane Channel, and Urban-Dense 
Channel to Plain-Hillock Channel. We validated the performance of the proposed 
method and other advanced domain adaptation methods through these migration sce-
narios. The performance comparison of different domain adaptation methods is shown 
in Table 1.
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From Table 1, we can see that the E-DANN method proposed in this article has high 
accuracy in all six transfer scenarios. Relative to the other six methods, there is an 
improvement in accuracy of approximately 3%. E-DANN is an enhancement of DANN, 
designed to acquire domain-invariant feature representations by incorporating domain 
classifiers and domain adversarial losses, which is simple and effective. In addition, an 
ensemble classifier is introduced to improve the accuracy in each scenario by integrat-
ing the performance of different classifiers. We can also see that the recognition per-
formance in the migration scenario from Plain-Hillock Channel to Alpine–Montane 
Channel is superior to other migration scenarios, because the signals in these two chan-
nel environments are highly similar and can provide more similar transferable features. 
In addition, we can also see that deep domain adaptive methods are superior to non 
deep domain adaptive methods, as deep domain adaptive methods can learn deeper 
transferable features.

4.5  The impact of the number of samples in the source domain and target domain 

on migration performance

Transfer learning cannot always assume that there are many samples in the source 
domain, therefore, it is essential to investigate the influence of the sample size in the 
source domain on domain adaptation methods. In this experiment, we set the sample 
quantity within the source domain to {1000, 2000, 3000, 4000, 5000, 6000, 7000} , while 
maintaining a constant number of samples in the target domain.

Figure  5 shows the recognition performance of different methods under different 
sample sizes in the source domain. It is evident that the accuracy rises with the increas-
ing number of source domain samples. And the E-DANN method outperforms other 
methods in recognition performance under different sample sizes. Therefore, changes 
in sample size have an impact on domain adaptation effectiveness. However, the change 
in sample size has little impact on the E-DANN method, and even with a sample size of 
1000, the accuracy of 90% can still be achieved. The TCA method is greatly affected by 
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Fig. 5 Recognition performance under different sample sizes in source domain
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the number of samples, as it cannot effectively find the shared space between the source 
and target domain when the number of samples in the source domain is small. MEDA is 
more complex than other shallow transfer methods, and it needs to deal with pop learn-
ing and dynamic distribution alignment. MEDA can maintain the intrinsic geometric 
and topological structure of the data and maintain the intrinsic properties of the data 
through manifold learning. MEDA introduces a dynamic distribution alignment mecha-
nism that can adjust the alignment strategy based on feedback from the classifier. This 
is the reason why the performance of MEDA is higher than that of shallow migration 
method, even ADDA.

The quantity of samples within the target domain is also a key factor affecting the 
effectiveness of transfer learning. Therefore, it is also very important to study the 
impact of the number of unlabeled samples in the target domain on recognition per-
formance. In this experiment, we set the number of samples in the target domain to 
{1000, 2000, 3000, 4000, 5000, 6000, 7000} , while maintaining a constant number of sam-
ples in the source domain.

Figure 6 shows the recognition performance of different methods under different sam-
ple sizes in the target domain. We can see that as the sample size increases, the rec-
ognition performance of different methods is basically not affected. The recognition 
performance of E-DANN method is higher than other methods under different sample 
sizes. When the number of samples in the target domain is 1000, an accuracy rate of over 
90% can still be achieved. This indicates that good performance can also be achieved 
with a small number of samples.

4.6  Ablation experiment

This experiment mainly verifies the superiority of adding transformer encoder.We will 
refer to the DANN that adds a transformer encoder as DANN-Transformer. Figure  7 
shows the performance comparison of DANN method and DANN-Transformer method 
for mutual migration in three different channel environments.
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We can see that the performance in any migration scenario after adding the trans-
former encoder is higher than that without adding it. Because transformer encoder has 
strong long-distance feature acquisition ability, it can better extract the contextual rele-
vance of signals. We can also see that the values on the diagonal are the highest, indicat-
ing that the recognition performance is the best in the same migration scenario, as the 
signal features of the two are the most similar. The transformer encoder can make the 
output features follow a Gaussian distribution, providing deeper transferable features for 
better feature alignment.

5  Conclusion
In this article, we propose a method for identifying specific emitters using ensemble 
domain adversarial neural network. This method consists of a domain adversarial neu-
ral network based on transformer encoder and an ensemble learning classifier. Specif-
ically, the former adds a transformer encoder after the feature extraction layer of the 
domain adversarial neural network, so that the extracted features from the source and 
target domains follow a Gaussian distribution after passing through the encoder, which 
is conducive to feature alignment. The latter utilizes the ensemble learning method of 
weighted voting to combine the results of multiple weak learners to improve recogni-
tion performance. The migration performance of the proposed method was evaluated 
in three environments: Alpine–Montane Channel, Plain-Hillock Channel, and Urban-
Dense Channel, and compared with the other six methods. The simulation results show 
that the proposed method exhibits superior performance compared to the other six 
methods, with an accuracy improvement of about 3%. In addition, the impact of the 
sample quantity in the source and target domain on the adaptation effect of the migra-
tion domain was also analyzed. In the future, we hope to continue studying the impact of 
feature subspaces on migration performance.
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