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Abstract 

In this paper, we consider the graph signals are sparse in the graph Fourier domain 
and propose an iterative threshold compressed sensing reconstruction (ITCSR) algo‑
rithm to reconstruct sparse graph signals in the graph Fourier domain. The proposed 
ITCSR algorithm derives from the well‑known compressed sensing by considering 
a threshold for sparsity‑promoting reconstruction of the underlying graph signals. 
The proposed ITCSR algorithm enhances the performance of sparse graph signal 
reconstruction by introducing a threshold function to determine a suitable threshold. 
Furthermore, we demonstrate that the suitable parameters for the threshold can be 
automatically determined by leveraging the sparrow search algorithm. Moreover, 
we analytically prove the convergence property of the proposed ITCSR algorithm. In 
the experimental, numerical tests with synthetic as well as 3D point cloud data demon‑
strate the merits of the proposed ITCSR algorithm relative to the baseline algorithms.

Keywords: Sparse graph signals, Iterative threshold compressed sensing 
reconstruction (ITCSR), Graph Fourier domain, Compressed sensing (CS)

1 Introduction
In recent years, there is a noteworthy surge in research interest regarding the analysis of 
irregular structured signals across various fields and applications. In many practical sce-
narios, the occurrence of missing signals within these irregular structured signals poses 
a critical concern. The loss of signals can be attributed to various factors, including sen-
sor malfunctions, signal transfer losses or system maintenance activities. In this context, 
signal reconstruction techniques are developed to substitute the missing signals with 
dependable estimations. Furthermore, graph signal processing (GSP) [1–3] is introduced 
as an intuitive framework to deal with graph signals lying on an irregular structure, 
which applies to a wide class of classical use cases such as traffic [4], sensor network 
[5], 3D point cloud [6, 7], image processing [8], air pollution monitoring platform [9] 
and recommendation system [10]. In the realm of GSP tools, the task of reconstruction 
emerges as a straightforward approach to address the intricate challenge of estimating 
missing signals.

In classical situations, graph signal reconstruction is often based on some assumptions, 
such as smoothness, bandlimitedness, stationarity and sparsity. [11] formulated the graph 
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model for conflict resolution (GMCR) and employed the proximal gradient algorithm to 
solve it. The GMCR assumed signal smoothness on the graph and the penalty term uti-
lized in this approach is based on the quadratic form of graph total variation. However, 
this assumption can lead to a deteriorated reconstruction if the signals of interest have dis-
similar values between the vertices that are connected with respect to the ground truth 
topology. [12] introduced a graph signal reconstruction technique for estimating the power 
spectral density (PSD) of graph signals and was further utilized to develop Wiener-type 
estimation procedures for signals that are both noisy and partially observed. Nevertheless, 
the reconstruction method proposed in [12] cannot directly estimate the PSD. Instead, 
the method assumed that the graph signals are stationary and stochastic. Inspired by the 
idea of the classical Papoulis–Gerchberg iterative scheme, [13] proposed the iterative least 
square reconstruction (ILSR) to reconstruct the bandlimited graph signals from sampled 
signals. In addition, [14] proposed two efficient graph signal reconstruction methods, 
namely the iterative propagating reconstruction (IPR) and the iterative weighting recon-
struction (IWR). To mitigate the computational expense associated with eigen-decom-
position of the graph Laplacian matrix when dealing with bandlimited graph signals, [15] 
leveraged Gershgorin disks to optimize a sampling criterion relying on the lower bound of 
the smallest eigenvalue of the graph Laplacian matrix. The methods presented in [12–15] 
assumed that the graph signals are bandlimited in the graph Fourier domain, and the ban-
dlimited graph signals are also defined as sparse graph signals. However, a major difference 
in this paper is that bandlimited graph signals, as graph Fourier domain sparse signals, have 
a certain bandwidth limitation across the entire graph Fourier domain. In other words, the 
nonzero coefficients of bandlimited graph signals only exist in the low-frequency space 
which cannot fully capture all the characteristics of real-world signals.

Inspired by the theory of compressed sensing (CS), many researchers proposed a vari-
ety of signal reconstruction algorithms based on sparse representation, such as basis 
pursuit (BP) [16], orthogonal matching pursuit (OMP) [17] and iterative hard thresh-
olding (IHT) [18]. These algorithms provided important theoretical foundations and 
methodologies for sparse graph signal reconstruction. In the references related to sparse 
graph signal reconstruction [19–21], notable contributions include research on mod-
eling the sparsity of graph signals and the development of compressed sensing recon-
struction algorithms based on graph signals. The concept of sparse graph signal model 
refers to the existence of nonzero coefficients throughout the entire graph Fourier 
domain, including the high-frequency space. [19] proposed iterative method with adap-
tive thresholding for graph interpolation (IMATGI) to sparsity-promoting reconstruc-
tion of graph signals. Furthermore, [20] presented the recovery and sampling algorithms 
by selecting predetermined cardinality subset of vertices that guarantees reconstruction 
of the graph signals with the lowest possible reconstruction error. [21] proposed three 
sparse graph signal reconstruction algorithms based on BP, OMP and IHT, respectively. 
In order to achieve efficient compression, sampling and reconstruction of signals, the 
compressive sampling matching pursuit (CoSaMP) algorithm was developed [22]. These 
references contributed important insights into understanding the sparsity of graph sig-
nals and proposed effective reconstruction algorithms. However, it is unfortunate that as 
the vertex count increases in the graph, the distortion in the reconstructed graph signals 
using these algorithms also escalates.
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In this paper, we consider the graph signals are sparse in the graph Fourier domain. For 
the sparse graph signal reconstruction, we propose an iterative threshold compressed sens-
ing reconstruction (ITCSR) algorithm, which effectively addresses the challenges associated 
with signal reconstruction. The proposed ITCSR algorithm enhances the performance of 
sparse graph signal reconstruction by introducing a threshold function to determine a suit-
able threshold. Furthermore, we demonstrate that the suitable parameters for the threshold 
can be automatically determined by leveraging the sparrow search algorithm (SSA) [26]. 
Convergence analysis of the proposed ITCSR algorithm is provided. Experiments on both 
synthetic datasets and 3D point cloud datasets demonstrate that the reconstruction perfor-
mance of the proposed ITCSR algorithm outperforms that of the baseline algorithms.

The main contributions in this paper are summarized as follows. 

1. It proposes a new algorithm, referred to as ITCSR, for solving sparse graph signal 
reconstruction problem.

2. It gives a theoretical analysis of the convergence property of the proposed algorithm 
by utilizing the restricted isometry property (RIP).

3. It demonstrates that the proposed ITCSR algorithm indeed produces a significant 
improvement in terms of sparse graph signal reconstruction performance in publicly 
available 3D point cloud datasets.

1.1  Paper overview

The remainder of this paper is organized as follows. Some related basic definitions of 
GSP and K-sparse graph signals are stated in Sect. . Section  formulates the target model 
and describes the proposed ITCSR algorithm. In Sect. , the convergence analysis for the 
proposed ITCSR algorithm is presented. In Sect. , the proposed algorithm is compared 
with the baseline algorithms and experiments to validate the performance of our ITCSR 
algorithm. Finally, we conclude the paper in Sect. .

1.2  Notation

In this paper, we adopt the following notations. Boldface lowercase letters denote vectors, 
whereas boldface uppercase letters denote matrices. In the tables, we represent the optimal 
values in bold font. diag(·) is a diagonal matrix with its argument along the main diagonal. 
(·)⊤ , (·)−1 , (·)† denotes transpose operation, inverse operation and pseudoinverse operation, 
respectively. The notation | · | indicates the cardinality of a set. For a vector f , ‖f‖0 and ‖f‖2 
represent its 0-norm and Euclidean norm, respectively.

2  Preliminary
In this section, we review definitions of graph Laplacian matrix and sparse graph sig-
nals that are used in the development of the proposed ITCSR algorithm and theoretical 
framework.

2.1  Graph Laplacian matrix

An undirected graph without self-loops is represented as G := {V , E ,A} , where 
V = {v1, v2, ..., vN } is the vertex set and E ⊆ V × V is the set of undirected edges connecting 
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the vertices. A ∈ R
N×N indicates the adjacency matrix of the graph. The elements of A are 

defined as

In general, adjacency matrix A is a matrix used to represent the connection relationship 
between vertices in a graph. As an extension of the adjacency matrix, the weight matrix 
W contains the weight information of the connection. The element wij of W represents 
the weight value of the connection between vertex i and vertex j. It is important to note 
that edge weights are usually assumed to be nonnegative real numbers. For each vertex 
vi , we define degree di = N

j=1 wij as the sum of edge weights connected to it. In this 
way, the degree matrix is defined as D = diag(d1, d2, · · · , dN ) . Along with W and D , the 
combinatorial Laplacian matrix L ∈ R

N×N is defined as

Since L is a real symmetric and positive semi-definite matrix, it admits the eigen-
decomposition L = U�U⊤ , where the � = diag(�1, �2, · · · , �N ) is a diagonal matrix of 
nonnegative eigenvalues and the unitary matrix U = [u1,u2, · · · ,uN ] containing the 
corresponding eigenvectors.

2.2  K‑sparse graph signals

Graph signals are scalar-valued mapping { : V �→ R defined on the vertices of the graph. It 

can be represented as a vector f = [f1, f2, · · · , fN ]⊤ ∈ R
N , where the i-th component fi rep-

resents the value of the signal at vertex vi . Since the Laplacian matrix L satisfies the property 
of real symmetry, all the eigenvalues of L are nonnegative, 0 = �1 ≤ �2 ≤ · · · ≤ �N , and the 
corresponding eigenvectors are orthogonal. Then, the graph Fourier transform (GFT) is 
defined as the projection onto the orthogonal set of the eigenvectors of L , i.e.,

Similar to classical Fourier analysis, the eigenvalues {�i}0≤N in this context represent the 
frequencies of the graph, while f̂i represents the frequency component. And the inverse 
graph Fourier transform (IGFT) can be expressed as

For a given set K = {k1, k2, · · · , kK } , where K ≤ N  , the graph signals f̂  exhibit K-sparsity 
in GFT domain and can be mathematically defined as follows

In other words, K-sparse graph signals f̂  can be expressed as a linear combination of 
K ≤ N  eigenvectors of the graph Laplacian L , which can be represented as

(1)Aij =
{
1, if (vi, vj) ∈ E
0, otherwise

, i, j = 1, · · · ,N .

(2)
L = D−W.

(3)f̂ =
[
f̂1, f̂2, · · · , f̂N

]⊤
=

N∑

i=1

uifi = U⊤f .

(4)f = U f̂ .

(5)f̂kl �= 0, for kl ∈ K and f̂kl = 0, for kl /∈ K, l = 1, · · · ,K .
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A major difference is that in many previous works, it is assumed that sparse graph sig-
nals in graph Fourier domain are confined to low-frequency space, meaning that the 
positions corresponding to frequency components K = {k1, k2, · · · , kK } are known [5] 
[10]. Due to the assumption of smoothness in the graph Fourier domain and the absence 
of any frequency components beyond its bandwidth, the bandlimited graph signal model 
fails to capture the details and rapid changes in the high-frequency space of the signal. 
Consequently, important information may be lost during the graph signal reconstruction 
process. Therefore, we propose a sparse graph signal model that considers all frequency 
components within the entire graph Fourier domain, aiming to enhance the perfor-
mance of graph signal reconstruction and better preserve crucial information within the 
real-word signals. It implies that the positions corresponding to frequency components 
K = {k1, k2, · · · , kK } are unknown.

2.3  The framework of SSA

SSA is a swarm intelligence optimization algorithm based on the behavior of sparrows 
foraging and avoiding predators. In this paper, the position of sparrows can be repre-
sented in the following matrix

where n is the number of sparrows. Then, the fitness value of all sparrows can be 
expressed by the following vector

where the value of each row in F represents the fitness value of the individual. During 
each iteration, the location update of producers is defined as

where Xi,j represents the element in the i-th row and j-th column of the matrix X. Q 
is a random number following a normal distribution and I represents a matrix with 
all elements being 1. η ∈ (0, 1] is a random number and lmax represents the number of 
maximum iteration. r ∈ [0, 1] and ST ∈ [0.5, 1] represent the alarm value and the safety 
threshold, respectively. Similarly, the location update of scroungers is defined as

(6)fn =
K∑

l=1

f̂klUkl ,n, n = 1, 2, · · · ,N .

X =




α1,1 β1,2
α2,1 β2,2
...

...
αn,1 βn,2


,

(7)F =




g([α1,1,β1,2])
g([α2,1,β2,2])

...
g([αn,1,βn,2])


,

(8)Xl+1
P =

{
Xl
i,j exp

(
− i

ηlmax

)
if r < ST

Xl
i,j + QI otherwise

, i = 1, · · · , n, and j = 1, 2,
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where Xw represents the current globally worst position of the individual and C repre-
sents a matrix, where each element is randomly assigned a value of 1 or −1 . When spar-
row detect danger and the alarm value more than the safety value, the location updated 
by

where Xb represents the current globally best position of the individual. As the control 
parameter for step size, ζ is a normal distribution of random numbers with a mean of 0 
and a variance of 1, ensuring the original meaning remains unchanged. Fi represents the 
current fitness values of the individual, Fb and Fw are the current global best and worst 
fitness values of the individual, respectively. In this paper, Fb is defined as

The pseudo-code for the model proposed in this study is shown in Algorithm 1.

Algorithm 1 The framework of SSA

(9)Xl+1
S =





Q exp

�
Xl
w−Xl

i,j

i2

�
if i > j/2

Xl+1
P +

���Xi,j − Xl+1
P

��� · C†I otherwise

,

(10)Xl+1
A =





Xl
b + ζ

���Xl
i,j − Xl

b

��� if Fi > Fb

Xl
i,j + R

� ���Xl
i,j−Xl

w

���
(Fi−Fw)+ε

�
if Fi = Fb

,

(11)î = arg min
αi,1∈X ,βi,2∈X

g(αi,1,βi,2),α = α
î,1
,β = β

î,2
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3  The proposed ITCSR algorithm for K‑sparse graph signals
In this section, we consider the reconstruction of K-sparse graph signals. First, we formu-
late the K-sparse graph signals reconstruction as solving an underdetermined equation sys-
tem. We then present the proposed ITCSR algorithm to solve this problem and show the 
pseudo-code of the proposed ITCSR algorithm.

3.1  Problem formulation

K-sparse graph signals f̂ ∈ R
N in the graph Fourier domain, with sparsity K  , can be recon-

structed using a reduced number of available samples, denoted as M < N  . These sam-
ples correspond to a random subset S = {m1,m2, · · · ,mM} , selected from the vertex set 
V = {1, 2, · · · ,N } . The measurements vector containing the available samples is defined as

where fmM represents the sampled graph signals. According to (4), it then yields the fol-
lowing form

where the matrix UMN is obtained by selecting the rows from the matrix U that corre-
spond to the set S . For simplicity, UMN is represented by � . (13) denotes the underdeter-
mined system of M equations and N  unknowns ( M < N  ), which can be formulated as

It is obvious that (14) is an underdetermined system of equations and f̂  is not uniquely 
reconstructive from y by linear algebraic means, as (14) may have many solutions. How-
ever, we aim to find a sparse solution, and sparsity can serve as a powerful constraint for 
specific measurement matrices � . It means that (14) can be solved when the position 
K = {k1, k2, · · · , kK } is known. The formulation of the K-sparse graph signal reconstruc-
tion in this paper considers the scenario where the positions of nonzero GFT coefficients 
are unknown, which can be formulated as

where the operator � · �0 is used as a sparsity measure.

3.2  The proposed ITCSR algorithm

This subsection introduces the proposed ITCSR algorithm to solve (15). The objective of 
ITCSR is to obtain an approximate solution to y = �f̂  . Now, we will outline its funda-
mental components. We denote η as a vector of residual correlations and r as a residual 
vector. Next, the maximum function of the residual correlations can be expressed as 
follows

(12)y =
[
fm1 , fm2 , · · · , fmM

]⊤
,

(13)y = UMN f̂ = �f̂ ,

(14)




fm1

fm2

...
fmM


 =




U1,m1 ... UN ,m1

U1,m2 ... UN ,m2

...
U1,mM ... UN ,mM







f̂1

f̂2
...

f̂N


 =




Uk1,m1
... UkK ,m1

Uk1,m2
... UkK ,m2

...
Uk1,mM

... UkK ,mM







f̂k1
f̂k2
...

f̂kK


.

(15)min �f̂�0 subject to y = �f̂ ,
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On this basis, a subvector is defined as b ∈ R
N−1 that represents the vector obtained by 

removing M(η) from the vector η . After that, a threshold function Vth can be denoted as

where α and β are parameters and can be optimized by SSA. In this paper, we set the fit-
ness value F = min ��⊤

C
y − y�22, s.t. C =

{
q :

∣∣�⊤y
∣∣ ≥ α

[
M(�⊤y)+ βM(ζ )

]}
 , where 

ζ represents the vector obtained by removing M(�⊤y) from the vector �⊤y . Accord-
ing to the SSA algorithm, the values of parameters α and β should fall within the range 
[0, 1]. In conjunction with our threshold function, when α is set to 0, the threshold set-
ting becomes unreasonable. Therefore, in this paper, the value of α is set to (0, 1]. After 
discussing these descriptions of the basic ingredients, we state the proposed ITCSR 
algorithm in detail. ITCSR is an iterative and greedy algorithm. At each step, ITCSR 
selects several elements from the residual correlation vector η , and adds its index to the 
identified support set K . ITCSR performs least square to estimate the signal. We let t be 
the t-th iteration of the ITCSR algorithm. Specifically, for the following descriptions, we 
let superscripts denote the iteration number of the ITCSR algorithm. ITCSR starts with 
initial graph signals f̂0 = 0 and initial residual vector r0 = y . The ITCSR algorithm also 
contains a set of estimates K of the positions of the nonzero coefficients and the initial 
estimated positions K0 = ∅ . The ITCSR algorithm, proposed as a solution to the consid-
ered problem, is composed of three fundamental steps:

• Position Estimation: Estimate positions K = {k1, k2, · · · , kK } of nonzero coeffi-
cients.

• Coefficient Reconstruction: Reconstruct nonzero coefficients f̂k at estimated posi-
tions k.

• Signal Reconstruction: Reconstruct original graph signals f .

At the step of Position Estimation, the t-th iteration performs the inner product of 
the current residual and the measurement matrix � to obtain the residual correlation 
vector

which contains a small number of significant nonzeros in each entry. After a simple cal-
culation, we could easily get the ηt . The ITCSR algorithm performs thresholding to find 
the significant nonzeros. Thresholding yields an index set

where (ηi)t represents the i-th element in the vector η at t-th iteration. Then, we merge 
the subset of newly selected coordinates with the previous support estimate, thereby 
updating the estimated available positions

(16)M(η) = max(η).

(17)Vth = α[M(η)+ βM(b)],

(18)ηt =
∣∣∣
〈
�, rt−1

〉∣∣∣ = �⊤rt−1,

(19)Lt =
{
i :

∣∣(ηi)t
∣∣ ≥ α

[
M(ηt)+ βM(bt)

]}
,

(20)Kt = Lt ∪Kt−1.
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At the step of Coefficient Reconstruction, according to estimated positions, we can cal-
culate the nonzero coefficients by projecting the vector y onto the columns of � . Letting 
�K denote the M × |K| matrix with columns chosen using index set K . The updated (f̂ ′)t 
is defined as

In combination with (20), the estimation of f̂  is defined as

By combining (20) and (22), the updated residual vector can be expressed as follows

At the step of Signal Reconstruction, in accordance with the estimated positions and the 
corresponding nonzero coefficients, the reconstructed graph signals (f̂ ′)t are calculated 
by (4)

Algorithm 2 The ITCSR algorithm

Algorithm  2 provided a summary of the proposed ITCSR algorithm. It is worth 
noticing that the thresholding strategy used in ITCSR algorithm utilizes the nonlinear 
approach that will allow several elements to be selected in (19). This threshold policy 
allows the proposed ITCSR algorithm to converge in fewer iterations.

(21)(f̂ ′)t = (�⊤
Kt�Kt )−1�⊤

Kty.

(22)(f̂ ′n)
t =

{
(f̂ ′k)

t if n = k , k ∈ Kt

0 otherwise
, n = 1, 2, · · · ,N .

(23)rt = y −�Kt (f̂ ′)t .

(24)(f ′)t = U(f̂ ′)t .
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4  Convergence analysis
In this section, we first introduce the restricted isometry constant (RIC) [23–25] for ease 
of theorem statement. Then, analytically prove the convergence of the proposed ITCSR 
algorithm through the introduction of Theorem  1. Our convergence analysis method 
cites reference [34].

The δK  represents an upper limit on the singular values of any submatrix of � contain-
ing K  or fewer elements, and it is symmetric. The RIC (Restricted Isometry Constant) is 
defined as the minimum value that satisfies the following condition

The condition holds true for all a vectors that contain at most K  nonzero elements. If the 
matrix has a small constant δK  , then every submatrix is very nearly orthogonal.

Theorem 1 For any observation y = �f̂  , the ITCSR algorithm will end up with select-
ing K  nonzero elements if the threshold optimization parameters α , β satisfy the following 
condition,

The estimate signal ỹt = �f̂ t satisfies

where

and where α and β as defined in Sect. . The superscript t represents the current iteration 
number. (ỹ∗)t = �Ŵ∗ f̂Ŵ∗ and Ŵ∗ is the index set of the largest K  elements in f̂  . �

The mathematical proof for Theorem 1 is available in the Appendix. Theorem 1 states 
that the proposed ITCSR algorithm guarantees a solution within a finite number of iter-
ations. In general, achieving an exact reconstruction relies on having a RIP with a small 
RIC. Based on this relationship, a smaller value of δK  corresponds to a smaller constant 
c in equation (28). In equation (27), it is evident that a smaller value of c corresponds 
to a smaller reconstruction error. Similarly, equation (28) demonstrates how c changes 
with different values of the threshold optimization parameters α and β . In this paper, the 
value range of α is (0, 1] and β is [0, 1] [26]. When α and β approach their upper bounds, 
c tends to decrease. Additionally, when δK  falls within the range of (0, 1), a smaller value 
of c leads to better reconstruction performance.

(25)(1− δK ) ≤
��a�22
�a�22

≤ (1+ δK ).

(26)δK+1 <
α(1+ β)√

K + α(1+ β)
.

(27)||y − ỹt ||2 ≤ c||y − (ỹ∗)t ||2,

(28)c =

������1+




1

α(1+ β)

�
1−δK
K − δK+1√

1−δK




2

,
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5  Experiments
This section conducts numerical experiments to gain insights into the proposed 
ITCSR algorithm and assess its reconstruction performance. Unless specified other-
wise, we utilize GSPBOX in MATLAB for graph signal processing, graph construc-
tion and visualizations. Firstly, we test the proposed ITCSR algorithm with synthetic 
data under different sampling methods and compare the results with baseline algo-
rithms. The compared algorithms are CoSaMP, ILSR and IMATGI. The computational 
complexity of the ILSR, CoSaMP, IMATGI and ITCSR algorithms is shown in Table 1, 
where K represents the level of sparsity and t represents the number of iterations. The 
computational complexity of the ITCSR algorithm is O(tK logN ) . Secondly, we apply 
the proposed algorithm to 3D point cloud model datasets [39] which are the Block, 
Cactus, Fandisk, Skull, Gargo and Dino, respectively. The experiments are conducted 
using MATLAB R2018a on a desktop computer equipped with an Intel Core i7-10700 
CPU and 32GB RAM. Three metrics, namely maximum absolute error (MAX), mean 
square error (MSE) and signal noise ratio (SNR) are employed to evaluate the recon-
struction performance of all algorithms. MAX is defined as

MSE is defined as

and SNR is defined as

, respectively, where Nf  represents the graph signal length. In the following experiments, 
the parameters α and β are selected by SSA. Smaller MAX and MSE values indicate bet-
ter reconstruction performance. To guarantee exact reconstruction from compressed 
measurements, one should choose a specific matrix which satisfies the RIP. It is notable 
that the coherence of a matrix � is a computable property that offers concrete guaran-
tees for reconstruction. The largest inner product between any two columns φi and φj of 
matrix � defines the coherence of the matrix � , denoted as

(29)MAX = max
{
f ′i − fi

}
, i = 1, 2, · · · ,N ,

(30)MSE =

∥∥∥
∑N

i=1

(
f ′i − fi

)∥∥∥
2

2

Nf
,

(31)SNR = �f�22
�f − f̂�22

,

Table 1 Comparison of computational complexity

Algorithm Computational 
complexity

ILSR O(N3)

CoSaMP O(tK(N +M))

IMATGI O(tKN)

ITCSR  O(tK log(N))
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According to the Welch bound [28], the lower bound of µ(�) is 
√

N−M
M(N−1)  . It is possible 

to show that the coherence of a matrix is always in the range 
[√

N−M
M(N−1) , 1

]
 . Similarly, in 

accordance with Geršgorin circle theorem [29], we can obtain that � satisfies the RIP of 
order K with δK = (K − 1)µ(�) if � has coherence µ(�) for all K < 1

µ(�)
 . Based on this 

new relation, the coherence in this paper should be in the range 
[√

N−M
M(N−1) ,

1
2K−1

]
 that 

guarantees reconstruction uniqueness.

5.1  Experiments on synthetic data

In this subsection, the performance of the proposed ITCSR algorithm is shown by 
two numerical experiments. In the experiments, two synthetic datasets are adopted, 
including the sensor network dataset and the swiss roll dataset.

5.1.1  Synthetic data: sensor network

In this experiment, we use the sensor network dataset to illustrate the reconstruction 
performance by the proposed ITCSR algorithm. To begin, we establish the default 
experimental setup in this experiment. The sensor network dataset is generated with 
N = 600 by

where ⌈
√
N⌉ denotes the smallest integer that is not less than 

√
N  and x ∼ U(0, 1) repre-

sents a random variable x that follows uniform U(0, 1) distribution. Then, we construct 
an undirected graph by 6-nearest neighboring algorithm. The weight matrix W can be 
obtained by assigning a value of 1 if there is an edge between two sensors, and it is 0 
otherwise. With L = U�U⊤ denoting the eigen-decomposition of graph Laplacian, the 
K-sparse graph signals f  are generated as f = Uf̂  , where f̂  are independent and identi-
cally distributed (i.i.d) Gaussian distribution and the K = 4 entries with most significant 
absolute values in the random signal are kept while the rest are set to zero. As for the 
selection of the sample set in this experiment, we mainly chose the following methods: 
maxsigmin (M1) [30], maxvolume (M2) [31], maxigmin (M3) [32] and random sampling 
(M4). For simplicity, the strategy of M4 in this paper includes the following two steps. 
First, initializing an array of size N  , where N  is the number of elements in the permuta-
tion. Fill the array with the values 1 to N  and randomly shuffle the numbers. Then, the 
first M number is selected as the sampling vertex.

In this paper, we conducted signal reconstructions using various parameter values to 
investigate the influence of parameter settings on the performance of the reconstruction 
algorithm. Table  2 shows the MSEs results under different sampling methods. Differ-
ent parameters may lead to different performances for different sampling methods. As 

(32)µ(�) = max
1≤i<j≤N

∣∣〈φi,φj
〉∣∣

�φi�22
∥∥φj

∥∥2
2

.

(33)

{
x = 1

⌈
√
N⌉∗[x∼U(0,1)] +

i

⌈
√
N⌉

y = 1

⌈
√
N⌉∗[y∼U(0,1)] +

j

⌈
√
N⌉

, {i, j = 0, · · · ,N − 1},
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shown in Table 2, the values of parameters α and β set to (1, 0) and (0.5, 0.5) by randomly 
and (0.4043, 0.6886) by SSA. As can be seen, the reconstruction performance improves 
as the value of optimal parameters α and β are obtained by SSA. In particular, the MSE 
of the reconstructed signal by the proposed ITCSR algorithm can be reach 3.2383e − 04 
when sampling rate is 0.5 after adjusting the threshold parameters by SSA, where e − 04 
represents a value where the decimal point is moved four places to the left. Then, to 
verify the convergence of the proposed ITCSR algorithm, we calculate the coherence of 
the matrix � under different sampling rates with different sampling methods in Table 3. 
First, we used the above four sampling methods to generate 100 groups of data at dif-
ferent sampling rates and then substituted the data of each group in (32) to calculate 
coherence and finally took the average value. It can be seen that the coherence of matrix 
� guarantees uniqueness.

In Fig. 1, to reveal the impact of the value K on ITCSR algorithm, we reconstructed the 
sensor network graph signals using different measurements M and the value K. As also 
described in Fig. 1, percentage reconstructed can achieve better performance under the 
same value K when measurements M increased. To compared the reconstruction per-
formance of the proposed algorithm with baseline algorithms, we set the sparsity factor 
K/N from 10% to 60% . For each sparsity factor and different algorithms, we reconstruct 
using 20 iterations and report the average achieved SNR in Fig. 2. As observed in Fig. 2, 
all curves experience a sudden knee like fall in reconstruction SNR as the sparsity fac-
tor increases. As expected, the proposed ITCSR algorithm can successfully reconstruct 

Table 2 MSE (e‑04) results by different sampling methods on the synthetic dataset with the level of 
sparsity K = 10

(α , β) Method 0.5 0.55 0.6 0.65 0.7  0.75 0.8 0.85

(1,0) M1 9.3151 9.2130 8.8923 8.2633 7.9741 7.2571 6.9424 6.7387

M2 9.4287 8.7822 8.3408 8.0105 7.6194 6.9537 6.4531 6.1303

M3 8.3720 7.7240 6.9148 6.1557 5.8381 5.3223 5.2342 4.9766

M4 6.3576 6.0159 5.3556 4.7726 4.5479 4.1092 3.6688 3.2437
(0.5, 0.5) M1 8.3209 8.0074 7.2315 7.0279 6.5951 6.1238 6.0080 5.8691

M2 7.0078 6.6124 6.3325 6.1226 5.9933 5.5821 5.2836 5.2012

M3 7.1729 6.1226 6.0600 5.3581 5.1465 4.7184 4.5138 4.3031

M4 6.0781 5.6632 5.1807 4.7119 3.6494 3.0292 2.8508 2.6001
(0.6733, 0.3076) M1 6.2298 6.1240 5.8017 5.6523 4.8146 4.3353 4.1801 4.0527

M2 5.6647 5.3052 4.6223 4.0760 3.9889 3.6483 3.1214 3.0013

M3 4.6444 4.3012 3.9950 3.3606 3.0927 2.7887 2.5122 2.1321

M4 4.3353 3.4229 2.8767 2.2077 1.7236 1.2061 0.9031 0.8125

Table 3 Coherence of matrix � under different sampling methods on the synthetic dataset with the 
level of sparsity K = 10

Sampling ratio 0.5 0.55 0.6 0.65 0.7  0.75 0.8 0.85

M1 0.0517 0.0509 0.0492 0.0471 0.0426 0.0411 0.0381 0.0352

M2 0.0504 0.0497 0.0485 0.0459 0.0409 0.0378 0.0351 0.0312

M3 0.0489 0.0469 0.0449 0.0415 0.0354 0.0331 0.0314 0.0303

M4 0.0493 0.0455 0.0419 0.0382 0.0303 0.0257 0.0216 0.0182
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less sparse signals. Figure 3 shows the MSE versus the number of iterations, with 60% 
sampling rate. It is observed that the proposed ITCSR algorithm exhibits both the fast 
convergence and the minimum reconstruction error. Overall, the proposed ITCSR 

Fig. 1 Percentage of sensor network graph signals reconstructed correctly (N=600)

Fig. 2 The reconstruction performance of different algorithms when the value of K changes
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algorithm can achieve good reconstruction performance while maintaining fast con-
vergence. To evaluate the reconstruction performance of the ITCSR algorithm against 
conventional sensor signal reconstruction algorithms, we conducted a specific experi-
ment. In this experiment, we additionally introduced a relative threshold-based sparsity 

Fig. 3 MSE versus the iteration number on the sensor network dataset

Fig. 4 The estimation percentage reconstructed with the number of measurements (M)
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estimation method (RTSE) [37] and robust sparsity estimation method (RSE) [38] for 
comparative analysis. Figure  4 indicates the percentage reconstructed estimation with 
the number of measurements. In the simulation, we set K = 12 . Figure 4 illustrates that 
the percentage reconstructed increased with the increase of M. It is obvious that the 
percentage reconstructed of ITCSR is larger than percentage reconstructed of RTSE and 
RSE. In other words, the proposed ITCSR algorithm has higher correct rate than con-
ventional algorithms in our simulation.

5.1.2  Synthetic data: swiss roll

In this experiment, we use the swiss roll dataset in 3D space to illustrate the reconstruc-
tion performance by the proposed ITCSR algorithm. The swiss roll dataset is generated 
with N = 2000 by

Then, we construct an undirected graph by 5-nearest neighboring algorithm. It is worth 
mentioning that the M4 method is selected.

In Fig.  5, we show the 3D swiss roll dataset visualization of the reconstructed data. 
Figure 5a, 5b illustrate the original swiss roll and sampled swiss roll. Figure 5c, d, e and f 
illustrates the visualization reconstruct results under sampling rate is 50% by using ILSR, 
CoSaMP, IMATGI and proposed ITCSR algorithm for swiss roll dataset, respectively. 
Overall, we observe that ITCSR outperforms other reconstruction algorithm. Even when 
compared to the ILSR and IMATGI algorithms, ITCSR still exhibits competitive recon-
struction performance. To be specific, compare Fig. 5a and c, the reconstruction perfor-
mance of the proposed ILSR algorithm has obvious deviation. Compare with Fig. 5a, d 

(34)





x = 3π
2 · (1+ t) · cos θ ,

y = 21 · t,
z = (1+ t) · sin θ .

Fig. 5 Comparative subjective performance of swiss roll dataset reconstruction. a Original swiss roll, b 
Sampled swiss roll, c Reconstructed swiss roll by ILSR, d Reconstructed swiss roll by CoSaMP, e Reconstructed 
swiss roll by IMATGI, f Reconstructed swiss roll by ITCSR
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and e, many obvious outliers exist in the swiss roll data reconstructed by the CoSaMP 
and IMATGI algorithms. The convergence comparison of the considered methods with 
60% sampling rate as shown in Fig. 6. As expected, the proposed ITCSR algorithm exhib-
its the minimum reconstruction errors and the fastest convergence.

5.2  Experiments on 3D point cloud data

In this subsection, we focus on applying our proposed ITCSR algorithm to six 3D point 
cloud datasets which are Block, Cactus, Fandisk, Skull, Gargo and Dino, respectively. To 
simplify the process, the graph is constructed using the 5-nearest neighboring algo-
rithm. The weighted matrix is formed by assigning the edge weight as W(i, j) = − 1

d2i,j
 , 

where di,j represents the distance between vertex i and j. To normalize Wnorm , we divide 
W by its maximum value, denoted as max(W) . Then, the graph signals are defined as 
“Location X,” “Location Y,” and “Location Z.”

Our objective is to estimate the missing Location values within an incomplete matrix 
of relative Location data. We select 50% , 60% and 70% of the measurements by the M4 
method and reconstruct all graph signals through the spectrum domain. We calculate 
the MAXs on six 3D point cloud datasets, and the results are shown in Table 4. In gen-
eral, we observe that for all reconstruction algorithms, the reconstruction performance 
improves when the sampling ratio increases. For the different sampling ratios under 
test, the MAX performance of ITCSR is very competitive. The proposed ITCSR algo-
rithm is far superior to the ILSR algorithm and IMATGI algorithm. Specifically, in Gargo 
3d point cloud dataset, the Maxs of the ILSR algorithm, IMATGI algorithm and pro-
posed algorithm in Location Z with 0.5 sampling ratio are 39.3352, 36.4275 and 14.5528, 

Fig. 6 MSE versus the iteration number on the swiss roll dataset
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respectively. Then, to verify the convergence of the proposed ITCSR algorithm, we cal-
culate the coherence of the matrix � under different sampling rates with different sam-
pling methods in Table 5.

To illustrate the performance of the proposed ITCSR algorithm, as shown in Figs. 7b, 
8b, the Fandisk with 6470 vertices and Skull 3D point cloud datasets with 20002 vertices 
are selected and sampling ratio is 50% . Compared with Figs. 7a, 8a, it is observed that the 
original signals are significantly missing. Overall, we observe that ITCSR improves the 
reconstruction performance in comparison with the other algorithms. This is because 
ITCSR utilizes the more general assumption of sparsity rather than the bandlimitedness 
of the underlying graph signals. Moreover, ITCSR combines the theory of compressed 
sensing and related concepts of graph signal processing and optimizes the selection of 
the threshold. To be specific, as indicated in Figs.  7c, 8c, the reconstructed 3D point 
cloud signal by using ILSR is distorted. Figure 7d, 8d shows the reconstructed 3D point 
cloud signal by using CoSaMP algorithm. As we can see, the accuracy of reconstructed 
signals by CoSaMP algorithm is insufficient as the data amount increases. Figures 7e and 
8e show the reconstructed 3D point cloud signal by using IMATGI can retain its original 
basic shape, but there are many outliers. Moreover, it can be seen from Figs. 7f and 8f 
that with the increase in vertex, the proposed ITCSR algorithm is obviously superior to 
the ILSR and IMATGI algorithms.

Table 5 Coherence of matrix � under different sampling methods on the 3D point dataset

Sampling ration Block Cactus Fandisk Dino Gargo Skull

0.5 0.1227 0.2390 0.2146 0.0783 0.1241 0.1113

0.6 0.0813 0.2121 0.1341 0.0488 0.0881 0.0990

0.7 0.0515 0.2175 0.0914 0.0404 0.0476 0.0735

Fig. 7 Comparative subjective performance of Fandisk 3D point cloud model reconstruction. a Original 
Fandisk 3D point cloud, b Sampled Fandisk 3D point cloud, c Reconstructed Fandisk 3D point cloud by ILSR, 
d Reconstructed Fandisk 3D point cloud by CoSaMP, e Reconstructed Fandisk 3D point cloud by IMATGI, f 
Reconstructed Fandisk 3D point cloud by ITCSR
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6  Conclusion
In this paper, we proposed the ITCSR algorithm for sparsity-promoting reconstruction 
of signals defined on graphs. The ITCSR algorithm considered the suitable threshold to 
ensure the performance in signal reconstruction and we provided a formal convergence 
analysis. Compared with the OMP, CoSaMP, ILSR and IMATGI, the proposed ITCSR 
algorithm decreased the MSE on synthetic datasets under different sampling methods. 
Experimental results on six public 3D Point Cloud datasets demonstrated that our algo-
rithm performs better, the MAX on Block, Cactus, Fandisk, Skull, Gargo and Dino less 
than those of the reference algorithms under 0.5, 0.6, 0.7 sampling ratio, respectively.

Appendix A The proof of Theorem 1
Now, we prove Theorem  1 in Sect.  . The method we adopted is an extension and 
enhancement based of prior work [34]. Before presenting the proof, we introduce two 
lemmas.

Lemma 1 For a matrix � whose columns are distinct m vectors, indexed �1, · · · , �m , we 
have a conclusion that the squared singular values of � exceed 1− δK .

Lemma 2 It can be shown that δK ≤ KδK+1 is established for every natural number K 
when matrix � satisfies the RIP with δK .

Fig. 8 Comparative subjective performance of Skull 3D point cloud model reconstruction. a Original Skull 3D 
point cloud, b Sampled Skull 3D point cloud, c Reconstructed Skull 3D point cloud by ILSR, d Reconstructed 
Skull 3D point cloud by CoSaMP, e Reconstructed Skull 3D point cloud by IMATGI, f Reconstructed Skull 3D 
point cloud by ITCSR
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We omit the easy proof and move on to the demonstration of the theorem.

Proof Let Ŵ∗ and f̂∗
Ŵ∗ = �†

Ŵ∗y be under the assumption of Theorem 1. In iteration t, 
suppose that the algorithm has selected the index set Ŵt ⊂ Ŵ∗ . Let the index set H = Ŵ∗ 
and J = {i, i /∈ H} . Then, the equation can be defined

We may calculate that

where the last inequality comes from standard properties of the RIP constant [see 
Lemma 1 [33]]. Continuing the calculation

where the last step refers to Lemma 2 [34]. In accordance with (A2) and (A3), the pro-
posed ITCSR algorithm therefore selects elements from set H satisfies

which (as both terms on the left need to be positive) is only possible if δK+1 <
α(1+β)√
K+α(1+β)

 . 

It then yields the following form of
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)∥∥
∞∥∥�⊤

H

(
(ỹ∗)t − ỹt
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)∥∥
∞

≤ max
i∈J

∥∥∥�†
Hφji

∥∥∥
1

≤
√
K max

i∈J

∥∥∥∥
(
�⊤

H�J

)†∥∥∥∥
2

·
∥∥∥�Hφji

∥∥∥
2

≤
√
K · δK+1

1− δK
,

(A3)

∥∥�⊤
J

(
y − (ỹ∗)t
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