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1 Introduction
With the increasingly significant changes in the environment, global resources are grad-
ually decreasing, rendering it increasingly difficult for people to meet their basic living 
needs, particularly the demand for water resources [1–4]. In response to this challenge, 
an increasing number of water resource scheduling projects are emerging to tackle 
the complexities inherent in water resource management. Within the domain of water 
resource scheduling engineering, a variety of methods have been developed for the 
establishment of an integrated operation system that encompasses multiple reservoirs 
and pumping stations. These methods effectively mitigate regional water replenishment, 
address resource shortages and manage overflow problems [5–9]. However, these meth-
ods overlook monitoring pumping station safety. In practical applications, predicting 
and analyzing the operating status of pumping stations is crucial for ensuring the stabil-
ity of water resource scheduling projects. With the continuous expansion of unmanned 
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pumping stations and the increasing complexity of equipment, it is necessary to develop 
real-time monitoring, early warning and efficient management systems to ensure the 
safety and stability of pumping station operation.

Unmanned monitoring technology is revolutionizing water conservancy engineer-
ing by addressing the limitations of conventional methods. Traditional methods rely 
on manual inspection and regular maintenance, which suffer from inefficiency, high 
costs and delayed responses to equipment failures. As an important direction of mod-
ern water conservancy engineering construction, unmanned monitoring technology 
achieves automated operation and efficient management of pumping stations through 
technologies such as sensor monitoring, remote monitoring of stations and unmanned 
aerial vehicle optimization scheduling and inspection [10–12]. Compared to manual 
methods, unmanned monitoring technology conserves human resources, enhances pro-
duction efficiency and ensures timely responses to equipment failures. There have been 
a number of studies utilizing unmanned surveillance technology to monitor water pro-
jects. Gama Moreno et al. proposed a system to measure the water level of water tanks 
using ultrasonic sensors and Arduino equipment. The system provides real time access 
to the status of water tanks through the GSM network. This facilitates timely interven-
tions, improving overall water supply efficiency [13]. Getu et al. proposed a water level 
sensor with a seven-segment display and a relay-based motor pump drive for automatic 
water level control, eliminating the need for manual monitoring. This design contributes 
to efficient water management and enhances automated system productivity [14]. Apte 
et  al. proposed an automated monitoring system addressing tank overflow, automatic 
filling and water quality with integrated sensors. They enhanced pumping system effi-
ciency by implementing a leak detection system and remote communication for identi-
fying and alerting users about pipe leaks [15]. Remote monitoring stations are another 
crucial component of unmanned monitoring systems. These stations analyze on-site 
data collected by sensors, providing real-time information on pumping station opera-
tion status to users, central monitoring centers or relevant institutions. Klokov et  al., 
for instance, improved the efficiency of sewage pumping stations by optimizing electric 
motor units and developing a modern sewage pumping station with real-time visualiza-
tion technology and remote control capabilities [16]. Tlabu et al. proposed a centralized 
intelligent digital water management system that utilizes a data-centric pump infrastruc-
ture and a comprehensive system architecture model to achieve data security, real-time 
monitoring and digitization to provide comprehensive support for business operations 
[17]. Mahjoub implemented an intelligent automated solution that integrates algorithms 
into microcontroller units, connecting PLC, operation panels and industrial networks to 
web servers. This allows for online control, anomaly detection and decision-making to 
enhance the availability, reliability and safety of production systems [18]. Despite nota-
ble progress, traditional unmanned monitoring still faces limitations, necessitating reg-
ular maintenance by technical personnel. The complexity of hardware systems results 
in elevated costs for personnel and equipment. Moreover, the strong interdependence 
between modules can impede the accurate real-time monitoring of pumping station 
equipment.

In recent years, the rapid development of deep learning has introduced a paradigm 
shift in visual analysis methods. By applying deep learning techniques to analyze 
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pumping station equipment images, more efficient and reliable technical support 
for pumping station operation management and maintenance can be achieved. The 
deep learning method was first composed of neural networks proposed by Histon 
et al. [19], which sparked a wave of deep learning. Alex Krizhevsky et al. proposed an 
AlexNet [20] based on the structure of convolutional neural network (CNN) that won 
the ImageNet image recognition competition, which also caused a huge response in 
the industry. He et al. proposed a convolutional neural network ResNet based on the 
shortcut structure [21], which solves the degradation phenomenon of network mod-
els after deep training, making deep learning models more expressive and suitable 
for complex tasks. Szegedy et  al. from Google proposed an Inception V4 based on 
Inception and Residual structures [22], which reduces the parameter count of convo-
lutional neural networks and improves the algorithm’s running speed. With the con-
tinuous development of deep learning, a growing number of deep learning methods 
are being proposed, such as generative adversarial network (GAN) which improves 
the generalization ability of models through sample expansion [23], recurrent neu-
ral network (RNN) which captures correlations in sequence data and maintains the 
model’s memory of historical information [24–26], LSTM is a special type of RNN 
that can learn long-term dependency information [27], the Unet network optimizes 
the performance of deep learning models in image segmentation tasks [28], while the 
Transformer network solves the problems of vanishing and exploding gradients, ena-
bling deep learning models to better capture long-distance dependencies [29]. There-
fore, deep learning models have a wide range of applications in fields such as image 
recognition, speech recognition and data analysis. Using deep learning for visual 
analysis can reduce the steps of manually designing feature extractors and achieve 
high accuracy and robustness after training on large-scale datasets.

At present, many studies are committed to applying deep learning technology to 
visual analysis tasks in the industrial field [30–33], promoting the rapid development 
of intelligent industry. The high automation and excellent performance of this tech-
nology provide new possibilities for visual analysis of unmanned pumping stations. 
However, there is relatively little research on visual analysis of unmanned pumping 
stations. By utilizing deep learning techniques to extract pumping station features, 
visual analysis of pumping stations can be conducted from multiple perspectives, 
which not only significantly reduces human resource costs but also achieves the goal 
of unmanned pumping stations.

Based on the current problems with unmanned monitoring technology, this paper 
proposes a visual analysis method based on deep learning, which augments the data-
set by employing data augmentation techniques on unmanned pumping station images. 
The integration of transfer learning, ResNet18 [21] and LSTM is employed to enhance 
the model’s generalization ability. This approach enables the identification, classification 
and analysis of the status of unmanned pumping stations, facilitating real-time moni-
toring and early warning of pumping station equipment status. Experimental results 
demonstrate the applicability of this method to automatic inspection, equipment fault 
diagnosis, maintenance monitoring and other facets of unmanned pumping stations. 
The method provides robust technical support for improving pumping station operation 
efficiency, reducing equipment maintenance costs and ensuring water resource safety.
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2  Methods
2.1  Model framework

The model framework employed in this study is shown in Fig.  1. It consists of two 
models, ResNet18 and LSTM. ResNet18 serves to extract features from pump images, 
while LSTM is employed to capture contextual relationships among pump images 
and enhance the classification of pumping station status. ResNet18 undergoes trans-
fer learning using the ImageNet large-scale dataset [20]. Following transfer learn-
ing, ResNet18 is utilized to extract features from pumping station images and these 
extracted features are then fed into LSTM for classification to yield prediction results. 
Transfer learning is widely utilized in computer vision, where inputting algorithm 
models into existing standard datasets for training enables the derivation of optimal 
weight models for practical projects. This method significantly reduces the complex-
ity of model training and enhances convergence speed. Due to the scarcity of visual 
images in the pump station industry, the application of transfer learning endows the 
model with generalization ability, enhancing its robustness. It also enabled the model 
to maintain high accuracy, even in the case of pump station images that show sig-
nificant differences. ResNet18 is an algorithmic model based on convolutional neu-
ral networks that prevents gradient vanishing and network degradation during deep 
training. This characteristic ensures improved model convergence and its lightweight 
nature facilitates deployment in real-time monitoring applications for pumping sta-
tion status. LSTM, as a specialized recurrent neural network structure, is primarily 
employed for processing sequence data. In this study, ResNet18 is employed to gen-
erate sequence data as input to LSTM, effectively mitigating gradient vanishing and 
exploding issues. Furthermore, considering the large volume and spatial occupation 
of water pumps in images, with continuous pixels, utilizing LSTM to establish contex-
tual relationships among pumping station images enhances the visual analysis of the 
pumping station’s status.

Fig. 1 Network model
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2.2  Network model

2.2.1  Convolutional feature extractor

Feature extraction constitutes a pivotal phase in the visual analysis of images, and this 
article employs ResNet18 to undertake this crucial task. ResNet18 is trained on the Ima-
geNet dataset and the weight parameters are upgraded by transfer learning. Given the 
limited number of pumping station state samples, the application of transfer learning 
methods proves instrumental in significantly reducing the time and sample size required 
for model training. This method not only enhances the model’s generalization ability but 
also empowers ResNet18 to extract fundamental features.

ResNet18 consists a series of convolutional layers, pooling layers, global pooling layers 
and fully connected layers. The convolutional layer, characterized by a step size of 2 and 
a convolution kernel size of 7 * 7, executes the multiplication of input feature values with 
weight values, followed by the addition of a bias value to yield the convolutional out-
put value. This process completes the extraction of image features. This convolutional 
operation serves as a fundamental block for ResNet18, allowing it to effectively capture 
and represent intricate features in pumping station images. The convolutional formula is 
shown as:

where w is the weight value,x is the input feature value,b is the bias value and y is the 
convolutional output value.

The pooling layer in ResNet18 employs a maximum pooling method with a step size 
of 2 and a size of 3 × 3. This pooling operation serves to downsample the input feature 
map, effectively reducing its size while retaining crucial feature information. The down-
sampling process contributes to decreased computational and memory requirements, 
resulting in a more lightweight model. The pooling formula is shown as:

where xij is the input feature value,max (x) is the function that takes the maximum 
value of x,y is the pooled output value. ResNet18 primarily comprises stacked residual 
blocks, each consisting of two convolutional layers and a shortcut, as illustrated in Fig. 1 
of ResNet18 architecture. The convolutional layers employ a step size of 1 and a 3 × 3 
convolution kernel. Following convolution, the output feature values undergo ReLU 
activation to uphold network sparsity and mitigate the issue of gradient vanishing. This 
architectural design enhances the model’s ability to capture intricate patterns in data 
while addressing challenges associated with gradient propagation. The ReLU formula is 
shown as:

where x is the input feature value,y is the output value of the activation function. The 
shortcut in ResNet18 preserves the original input information by traversing the convolu-
tional layer and adding it to the output value post-convolutional operation, subsequently 

(1)y = w × x + b

(2)y = max
x11 x12 x13
x21 x22 x23
x31 x32 x33

(3)y =

{
1, x > 0
0, x ≤ 0
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passing it to successive layers. This mechanism enhances the network’s capacity to learn 
residual and detailed information, mitigates the issue of gradient vanishing, facilitates 
the swift transmission and retention of information, expedites network convergence and 
thereby enhances overall performance. The Short cut formula is shown as:

where F(x) is the output value after the convolutional operation,x is the input feature 
value and y is the shortcut output value. The global average pooling layer transforms 
the output layer of the final residual block into a fixed-length vector, thereby preserving 
information across channels and aiding in feature extraction. The formula for average 
pooling is shown as:

where xij is the input feature value, avg(x) is the function that takes the average value of 
x , and y is the pooled output value. The fully connected layer links all nodes within the 
feature vector produced by the global average pooling layer, mapping them to the requi-
site length of the input sequence data for LSTM.

2.2.2  LSTM classifier

The LSTM classifier is the process of predicting the pumping station status based on the 
pumping station image. LSTM is a variant of RNN structure, mainly used for modeling 
and prediction tasks of sequence data. Compared to traditional RNNs, LSTM has stronger 
memory and long-term dependency modeling capabilities, which can effectively solve the 
problems faced by traditional RNNs such as gradient vanishing and exploding. During nor-
mal pump operation, pixel information within the water pump remains continuous. How-
ever, in the event of a malfunction, faults between pixels emerge, leading to a noticeable 
divergence in the region surrounding the faulty pixel from the typical water pump opera-
tion. Leveraging LSTM to capture contextual relationships within the image sequence 
features, extracted by ResNet18, proves advantageous in classifying pumping station sta-
tuses. This approach enables a more comprehensive understanding of spatial and temporal 
information embedded in water pump images, thereby enhancing classification accuracy. 
A distinctive feature of LSTM lies in the introduction of a structure known as a "gate," 
which regulates the input, forgetting, and output of information in distinct ways. This gat-
ing mechanism effectively controls the flow of information and facilitates memory updates, 
contributing to the model’s robust performance. A standard LSTM unit consists of forget 
gate, input gate, output gate and cell state, as shown in Fig. 1. In the figure, S represents the 
sigmoid function and T represents the tanh function are shown as:

(4)y = F(x)+ x

(5)y = avg





x11 x12 x13
x21 x22 x23
x31 x32 x33






(6)f (x) =
1

1+ e−x

(7)f (x) =
ex − e−x

ex + e−x
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The forget gate of LSTM controls the update of cell state by using a sigmoid function 
to determine whether to retain or forget the previous cell state. The forget gate first fuses 
the sequence data xt outputted by ResNet18 with the memory state ht−1 at time t − 1 , 
and after passing through the sigmoid function, it is fused with the cell state ct−1 at time 
t − 1 . The formula for the forget gate is shown as:

where σ is the sigmoid function, Wf  is the weight matrix of the forget gate, bf  is the bias 
vector of the forget gate. The input gate controls the inflow of input information by using 
a sigmoid function to determine whether to fuse the current input information with the 
cell state. The input gate first passes the fused data of xt and ht−1 through the sigmoid 
function and tanh function and outputs the input gate it and candidate memory unit c̃t 
respectively. Then it multiplies it with c̃t and ft with ct−1 element by element and fuses 
the states of the two multiplied results to obtain the updated memory unit ct . The calcu-
lation formulas for input gate it , candidate memory unit c̃t and updated memory unit ct 
are shown as:

where Wi is the feature matrix of the input gate, bi is the bias vector of the input gate, Wc 
is the feature matrix of the candidate memory unit and bc is the bias vector of the candi-
date memory unit. The output gate determines whether to output the current cell state 
through the sigmoid function to control the generation of output information. Firstly, 
the fused data of xt and ht−1 is used to obtain the output gate ot through the sigmoid 
function. Then, the memory unit ct is controlled to be scaled through the tanh function. 
Finally, the scaled memory unit ct is multiplied element by element with the output gate 
ot to obtain the memory state ht , which is the model prediction result. The calculation 
formulas for output gate ot and memory state ht are shown as:

where Wo is the feature matrix of the output gate and bo is the bias vector of the output 
gate.

2.3  Transfer learning

Transfer learning is a widely adopted technique in deep learning, expediting model 
training and enhancing performance by leveraging model parameters, weights and fea-
tures trained in a source domain for tasks in a target domain. This approach proves par-
ticularly valuable in scenarios with limited data, where crucial parameters and features 
can be gleaned from extensive datasets and applied to target tasks, enabling models to 

(8)ft = σ

(
Wf · [ht−1, xt ]+ bf

)

(9)it = σ(Wi · [ht−1, xt ]+ bi)

(10)c̃t = tanh(Wc · [ht−1, xt ]+ bc)

(11)ct = it ∗ c̃t + ft ∗ ct−1

(12)oc = σ(Wo · [ht−1, xt ]+ bo)

(13)ht = ot ∗ tanh(ct)
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perform effectively even in situations of data scarcity. In the context of this article, the 
ImageNet dataset is chosen as a large-scale dataset for transfer learning on ResNet18. 
The pretrained ResNet18 is then applied to extract features from pumping stations, 
addressing both the shortage of pumping station data and the challenges associated 
with extracting meaningful features. Furthermore, the article proposes the redefinition 
of a fully connected layer to output sequence data with a length of 500 as the input for 
LSTM. This modification enhances the model’s ability to articulate pumping station fea-
tures while concurrently reducing the number of parameters, thereby accelerating the 
training speed of the model. Through this transfer learning methodology, the network 
model achieves improved generalization to the target task, learning more universal fea-
tures and ultimately enhancing its performance on the pumping station-related tasks.

3  Results and discussion
3.1  Dataset

The dataset utilized in this study is self-collected and preprocessed, encompassing 1546 
images capturing pumping stations at various time periods, angles and operational 
states. Each image boasts a resolution of 320 * 320 pixels. To organize the data effectively, 
images of the same category are grouped within the same folder, and labels are auto-
matically generated using software. The label information encompasses three distinct 
operating states: complete failure, partial failure and normal operation. In the context 
of this dataset, the "normal operation" category denotes the absence of any abnormali-
ties across all equipment and components. This includes a fully intact pumping station 
structure, stable operation of crucial equipment such as water pumps and valves, and 
so forth. "Partial faults" indicate malfunctions or abnormal conditions in specific equip-
ment or components within the pumping station, such as structural damage, rusting, or 
minor issues with a particular water pump or valve. Lastly, "complete failure" signifies a 
severe malfunction in key equipment or components within the pumping station. Exam-
ples include significant structural damage, the inability to open, close crucial valves or 
an inability to pump water. The process of data preprocessing is shown in Fig. 2. The first 

Fig. 2 The procedure of image processing
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step is to obtain the original image. Subsequently, data augmentation techniques were 
applied to enrich the sample set. Then, standardize the size of the data enhanced images 
and generate corresponding labels.

3.2  Data augmentation

Data augmentation involves applying a series of transformations and perturbations 
to the original data to generate more diverse and enriched training samples, thereby 
enhancing the model’s generalization ability and robustness. In this study, various 
augmentation techniques, including rotation, flipping, scaling and noise addition, 
are employed to augment the dataset. Rotation is implemented at angles of 30°, 60°, 
90°, 120°, 150° and 180° to enhance the model’s robustness to different angle trans-
formations, enabling it to effectively handle variations in image orientation. Flipping 
is performed both horizontally and vertically, augmenting the dataset and improving 
the model’s adaptability to changes in image direction. Scaling, with ratios of 0.5 and 
1.5, simulates target objects at different scales, providing additional samples for scale 
changes and enhancing the model’s ability to recognize variations in scale. The addi-
tion of noise, including Gaussian noise, salt, pepper noise and multiplicative noise, 
serves to simulate real-world environmental interference. This augmentation strategy 
improves the model’s recognition and classification capabilities in complex and noisy 
environments.

3.3  Evaluating indicator

This study establishes a network model that integrates transfer learning, ResNet18 
and LSTM for dynamic visual analysis of unmanned pumping stations. The compre-
hensive evaluation of the model encompasses four key indicators: accuracy, precision, 
recall and F1 score.

Accuracy refers to the proportion of correctly predicted samples by the classifica-
tion model among the total number of samples, serving as a metric to gauge the over-
all precision of the model’s predictions. The accuracy calculation formula is shown as:

where TP is the number of correctly identified positive samples, FP is the number of 
incorrectly identified negative samples, TN is the number of correctly identified negative 
samples, and FN is the number of incorrectly identified positive samples.

Precision denotes the ratio of positively predicted samples by the classification 
model that are genuinely positive, offering a measure of the model’s precision in pre-
dicting positive samples. The precision calculation formula is shown as:

Recall represents the ratio of positive samples predicted by the classification model 
among all positive samples, providing insight into the model’s ability to recognize 
positive instances. The recall calculation formula is shown as:

(14)Accuracy =
TP+ TN

TP+ TN+ FP+ FN

(15)Precision =
TP

TP+ FP
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F1 score, as the harmonic mean of precision and recall, indicates the model’s perfor-
mance in achieving a balance between accuracy and recall. A higher F1 score implies 
superior model performance in this regard. The F1score calculation formula is shown 
as:

These indicators collectively offer a comprehensive evaluation of the model’s clas-
sification performance from various angles. Through a thorough analysis of these 
metrics, adjustments to model parameters can be made to enhance its overall clas-
sification performance.

3.4  Training data and parameters

This study employed a model that integrates transfer learning, ResNet18 and LSTM 
to predict the three different states of pumping stations. Transfer learning was uti-
lized to enhance the model’s generalization performance and expedite convergence, 
while ResNet18 played a crucial role in extracting image features, preventing gradient 
vanishing and addressing potential model degradation issues. LSTM was employed to 
establish contextual connections within the input sequence data, effectively manag-
ing long-term dependencies in the sequence and mitigating problems associated with 
gradient vanishing and exploding.

The tool parameters employed in this experiment are detailed in Table 1. Throughout 
the study, the dataset was partitioned into training, validation and testing sets, main-
taining a ratio of 6:2:2. The training and validation sets were utilized during the training 
phase, enabling the algorithm model to learn and adjust its parameters. Specifically, the 
training set was employed for training the model’s parameters and weights, ultimately 
enhancing the model’s prediction accuracy. Concurrently, the validation set played a piv-
otal role in fine-tuning hyperparameters, preventing overfitting to the training set and 
improving the model’s generalization capabilities. To further elaborate on the experi-
mental setup, a batch size of 32, a learning rate of 0.0005 and 20 epochs were specified. 
The output sequence data length from ResNet18 was set to 500 and the LSTM output 
length was configured to 3, corresponding to the three different states of the pump-
ing stations. The optimization process involved using the Adam optimizer and cross-
entropy loss function to refine the weight values of the model.

(16)Recall =
TP

TP+ FN

(17)F1score =
2× Recall× Precision

Recall+ Precision

Table 1 Tool parameters

Tool Parameters

Graphics card RTX 3060

Operating system Windows 11

Cuda Cuda 11.7

Data processing Python3.8
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3.5  Experiments

To demonstrate the efficacy of transfer learning in improving model convergence and 
enhancing generalization to the target task, this article visualizes the changes in loss val-
ues and accuracy throughout the training and validation stages, as shown in Fig. 3. Fig 
(a) illustrates the loss function’s progression during training, showcasing changes in the 
model’s loss values per training iteration. The horizontal axis represents the number of 
training batches, while the vertical axis denotes the loss function’s values. As training 
advances, the loss function gradually decreases, exhibiting a rapid downward trend that 
stabilizes over time. This trend signifies that transfer learning has effectively trained the 
algorithm model using extensive datasets, resulting in the acquisition of robust feature 
representations. Fig (b) presents the accuracy graph during the training phase, illustrat-
ing changes in the model’s accuracy across each training iteration. The horizontal axis 
represents the number of training epochs and the vertical axis depicts accuracy values. 
The figure reveals that the accuracy surpasses 90% by the fourth epoch, indicating the 
model’s proficient classification of samples. Particularly in scenarios with limited sam-
ple sizes, transfer learning proves advantageous by avoiding the need to train the model 
from scratch, thereby conserving substantial data collection and training time.

To demonstrate the performance of the algorithm model in this study, the same data-
set was used to train and validate LSTM, ResNet18 and ResNet18 + LSTM. Next, evalu-
ation metrics scores and confusion matrices for each model are obtained using the test 
set and compared with the proposed algorithm model in this paper. The results of these 
indices are shown in Table 2.

The experimental results reveal that when utilizing only LSTM, the accuracy, pre-
cision, recall, and F1 score are all notably lower, suggesting that LSTM is not inher-
ently suitable for direct deployment in image classification tasks. Given that ResNet18 
operates on a CNN structure, it exhibits significant advantages in image classifica-
tion, leading to substantial improvements in evaluation metrics compared to LSTM 
alone. Upon combining ResNet18 with LSTM, where the output of ResNet18 feeds 
into the input of LSTM, there is a further enhancement in model performance, with 
an approximate accuracy increase of 3.226%. This observation underscores the effec-
tiveness of using ResNet18 to generate sequence data and subsequently employing 

Fig. 3 Transfer learning ResNet18 + LSTM loss and accuracy during train and validation
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LSTM for sequence data classification. Moreover, the application of transfer learning 
on ResNet18 before image feature extraction contributes to an additional accuracy 
improvement of 1.613%. This outcome underscores the positive impact of transfer 
learning in enabling the model to acquire general features, augment its generalization 
capabilities and enhance the accuracy of classification results in practical tasks.

To provide a more visual representation of each model’s performance, this article 
generated confusion matrices for LSTM, ResNet18, ResNet18 + LSTM and transfer 
learning ResNet18 + LSTM, depicted in Fig. 4. In these matrices, darker colors repre-
sent higher values within the rectangular blocks. A careful examination of the confu-
sion matrices reveals that the model proposed in this article consistently achieves the 
highest prediction accuracy, effectively discerning between normal operation, partial 

Table 2 Performance comparison of deep learning models

Algorithm Accuracy (%) Precision
(avg) (%)

Recall
(avg) (%)

F1score
(avg) (%)

LSTM 71.935 72.326 71.918 72.011

ResNet18 94.193 94.447 94.230 94.206

ResNet18 + LSTM 97.419 97.410 97.404 97.405

Transfer learning 
ResNet18 + LSTM

99.032 99.057 99.020 99.024

Fig. 4 The confusion matrix of LSTM, ResNet18, ResNet18 + LSTM and Transfer Learning ResNet18 + LSTM
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faults and complete faults in water pumps. This demonstrates the model’s robust 
capability to accurately classify and predict the different states of pumping stations.

To illustrate the superiority of deep learning in image visual analysis over tradi-
tional machine learning methods, this article incorporates two feature extraction 
techniques—histogram of oriented gradient (HOG) and scale invariant feature trans-
form (SIFT). These features are coupled with traditional machine learning methods, 
including naive bayes (NB), decision tree (DT), random forest (RF), linear support 
vector machine (LSVM), nonlinear support vector machine (NLSVM) and k-nearest 
neighbors (KNN). The resulting evaluation index scores are compared with those 
obtained from deep learning models, and the comparative results are presented in 
Tables 3 and 4, respectively.

The experimental findings indicate that, on the whole, SIFT exhibits superior fea-
ture extraction capabilities for pumping station images compared to HOG. However, 
when employing the LSVM machine learning method, HOG proves more suitable 
for feature extraction than SIFT. For NB and DT machine learning methods, there 
is minimal disparity in classification performance for different features within the 
same image; nonetheless, these methods demonstrate suboptimal overall effective-
ness when applied to small-scale pumping station datasets. In contrast, RF, NLSVM 
and KNN algorithms exhibit superior classification performance for distinct features 
within the same image, particularly when employing SIFT. Notably, KNN achieves the 
highest accuracy at 95.477%, yet it still falls short compared to the accuracy achieved 
by deep learning models, which stands at 99.032%. Additionally, traditional machine 
learning methods for feature extraction are comparatively intricate when juxtaposed 
with deep learning. Consequently, the results suggest that deep learning is more 
suited for the visual analysis of small-scale pumping station images.

Table 3 Performance comparison of machine learning under HOG feature extraction

Algorithm Accuracy (%) Precision
(avg) (%)

Recall
(avg) (%)

F1score
(avg) (%)

NB 56.058 55.250 56.037 54.057

DT 64.620 64.727 64.713 64.583

RF 80.775 80.892 80.891 80.748

LSVM 81.422 81.658 81.492 81.411

NLSVM 85.784 85.815 85.844 85.757

KNN 70.436 73.958 71.292 69.717

Table 4 Performance comparison of machine learning under SIFT feature extraction

Algorithm Accuracy (%) Precision
(avg) (%)

Recall
(avg) (%)

F1score
(avg) (%)

NB 55.250 55.420 55.540 55.438

DT 66.721 66.945 66.713 66.729

RF 89.176 89.195 89.099 89.094

LSVM 68.982 69.364 68.953 67.886

NLSVM 92.407 92.653 92.186 92.285

KNN 95.477 95.447 95.415 95.411
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4  Conclusions
In this paper, we propose a visual analysis method based on dynamic platforms to address the 
challenges of monitoring unmanned pumping stations. We utilized transfer learning to train 
a more generalized ResNet18 for extracting pumping station image features. These features 
are transformed into sequence data and analyzed through LSTM to understand the contex-
tual relationship between image sequences, resulting real-time monitoring and early warning 
of equipment status. This method outperforms traditional methods in terms of autonomy, 
performance and scalability. Our experiments demonstrate its effectiveness in unmanned 
pumping station analysis, offering significant support for water resource management.
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