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Abstract 

Sparsity finds applications in diverse areas such as statistics, machine learning, and sig-
nal processing. Computations over sparse structures are less complex compared 
to their dense counterparts and need less storage. This paper proposes a heuristic 
method for retrieving sparse approximate solutions of optimization problems via mini-
mizing the ℓp quasi-norm, where 0 < p < 1 . An iterative two-block algorithm for mini-
mizing the ℓp quasi-norm subject to convex constraints is proposed. The proposed 
algorithm requires solving for the roots of a scalar degree polynomial as opposed 
to applying a soft thresholding operator in the case of ℓ1 norm minimization. The algo-
rithm’s merit relies on its ability to solve the ℓp quasi-norm minimization subject to any 
convex constraints set. For the specific case of constraints defined by differentiable 
functions with Lipschitz continuous gradient, a second, faster algorithm is proposed. 
Using a proximal gradient step, we mitigate the convex projection step and hence 
enhance the algorithm’s speed while proving its convergence. We present various 
applications where the proposed algorithm excels, namely, sparse signal reconstruc-
tion, system identification, and matrix completion. The results demonstrate the sig-
nificant gains obtained by the proposed algorithm compared to other ℓp quasi-norm 
based methods presented in previous literature.

Keywords: Sparsity, Compressed sensing, Rank minimization, Alternating direction 
method of multipliers, System identification, Matrix completion, Proximal gradient 
method

1 Introduction
1.1  Motivation

In numerical analysis and scientific computing, a sparse matrix/array is the one with 
many of its elements being zeros. The number of zeros divided by the total number of 
elements is called sparsity. Sparse data is often easier to store and process. Hence, tech-
niques for deriving sparse solutions and exploiting them have attracted the attention of 
many researchers in various engineering fields like machine learning, signal processing, 
and control theory.

The taxonomy of sparsity can be studied through the Rank Minimization Problem 
(RMP). It has been lately considered in many engineering applications including control 
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design and system identification. This is because the notions of complexity and system 
order can be closely related to the matrix rank. The RMP can be formulated as follows:

where X ∈ R
m×n and M ⊂ R

m×n is a convex set. The problem (1) in its generality is NP-
hard [1]. Therefore, polynomial time algorithms for solving large-scale problems of the 
form in (1) are not currently known. Hence, recently adopted methods for solving such 
problems are approximate and structured heuristics. A special case of RMP is the Sparse 
Vector Recovery (SVR) problem involving ℓ0 pseudo-norm minimization given by:

where x ∈ R
n , V ⊂ R

n is a closed convex set and �·�0 counts the number of the non-zero 
elements of its argument. From the definition of the rank being the number of non-zero 
singular values of a matrix, it can be easily realized that (1) is a generalized form of (2).

Numerous studies, which will be expounded upon in the subsequent section, have 
individually addressed effective solution methods for the problems presented in (1) and 
(2). These approaches utilize Schatten-p and ℓp quasi-norm relaxations, respectively. 
However, existing methods in this domain often either assume a predefined structure 
for the convex set M in (1) or exclusively cater to the specialized case articulated in (2). 
Consequently, these methods lack comprehensive applicability. Leveraging the inherent 
relationship between the Schatten-p quasi-norm and the ℓp quasi-norm of matrix singu-
lar values, we endeavor to formulate an efficient heuristic method based on Schatten-p 
relaxation. This method is devised to address both problems in a unified manner. The 
proposed approach begins with the introduction of an algorithm for solving the ℓp quasi-
norm relaxation of the SVR problem presented in (2). Subsequently, recognizing that (2) 
constitutes a specific case of (1), we utilize the developed ℓp quasi-norm minimization 
algorithm as a foundational component for constructing the envisaged generalized algo-
rithm for RMPs.

1.2  Related work

1.2.1  Sparse vector recovery

Given that many signals exhibit sparsity or compressibility, the SVR problem has found 
widespread applications in fields such as object recognition, classification, and com-
pressed sensing, as evidenced by studies such as [2–4]. The concept of sparse represen-
tation of signals and systems has been extensively discussed in [5], where the authors 
conducted a comprehensive review of both theoretical and empirical results pertaining 
to sparse optimization. They also derived the sufficient conditions necessary for ensur-
ing uniqueness, stability, and computational feasibility. Moreover, [5] explores diverse 
applications of the SVR problem, contending that in certain tasks involving denoising 
and compression, methods rooted in sparse optimization offer state-of-the-art solutions.

The problem of constructing sparse solutions for undetermined linear systems has gar-
nered significant attention. A survey conducted in [6] comprehensively examined exist-
ing algorithms for sparse approximation. The reviewed methods encompassed various 
approaches, including greedy methods [7, 8], techniques rooted in convex relaxation [3, 

(1)min
X∈M

Rank(X),

(2)min
x∈V

�x�0,
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4], those employing non-convex optimization strategies [9, 10], and approaches necessi-
tating brute force [11]. The authors discussed the computational demands of these algo-
rithms and elucidated their interrelationships.

Sparse optimization problems of the form min f (x)+ µg(x) have been extensively 
explored in the literature, where g(x) serves as a sparsity-inducing function, f represents 
a loss function capturing measurement errors, and µ > 0 functions as a trade-off param-
eter balancing data fidelity and sparsity. In [12], the authors addressed a sparse recov-
ery problem involving a set of corrupted measurements. By defining g(·) as the ℓ1 norm, 
they established a sufficient condition for exact sparse signal recovery, specifically the 
Restricted Isometry Property (RIP).

Motivated by the convergence of the ℓp quasi-norm to the ℓ0 pseudo-norm as p → 0 , 
the problem was extended in [13] by setting g as the ℓp quasi-norm for p ∈ (0, 1) . The 
authors presented theoretical results showcasing the ℓp quasi-norm’s capability to 
recover sparse signals from noisy measurements. Under more relaxed RIP conditions, 
it was demonstrated that the ℓp quasi-norm provides superior theoretical guarantees in 
terms of stability and robustness compared to ℓ1 minimization.

In [9], the authors considered the problem of SVR via ℓp quasi-norm minimization 
from a limited number of linear measurements of the target signal. However, the pro-
posed approach faced limitations due to its higher computational complexity compared 
to the ℓ1 norm. In [14], Fourier-based algorithms for convex optimization were leveraged 
to solve sparse signal reconstruction problems via ℓp quasi-norm minimization, demon-
strating a combination of the construction capabilities of non-convex methods with the 
speed of convex ones.

An alternative approach for sparse reconstruction was proposed in [15], replacing 
the non-convex function with a quadratic convex one. Furthermore, [16] introduced an 
Alternating Direction Method of Multipliers (ADMM) [17] based algorithm enforcing 
both sparsity and group sparsity using non-convex regularization. Additionally, [18] pro-
posed an iterative half-thresholding algorithm for expedited solutions of ℓ0.5 regulariza-
tion. The authors not only established the existence of the resolvent of the gradient of 
the ℓ0.5 quasi-norm but also derived its analytic expression and provided a threshold-
ing representation for the solutions. The convergence of this iterative half-thresholding 
algorithm was studied in [19], demonstrating its convergence to a local minimizer of the 
regularized problem with a linear convergence rate.

Conditions for the convergence of an ADMM algorithm aimed at minimizing the sum 
of a smooth function with a bounded Hessian and a non-smooth function are estab-
lished in [20]. In [21], the convergence of ADMM is analyzed for the minimization of 
a non-convex and potentially non-smooth objective function subject to equality con-
straints. The derived convergence guarantee extends to various non-convex objectives, 
encompassing piece-wise linear functions, ℓp quasi-norm, and Schatten-p quasi-norm 
( 0 < p < 1 ), while accommodating non-convex constraints. Several works have explored 
the ℓ1−2 relaxation objective, defined the difference between ℓ1 and ℓ2 norms, i.e., 
ℓ1 − ℓ2 , with [22] providing a theoretical analysis on SVR through weighted ℓ1−2 mini-
mization when partial support information is available. Recovery conditions for exact 
SVR within a ℓ1−2 objective framework are derived in [23, 24], along with references 
therein, establishing the theoretical foundation for ensuring accurate SVR outcomes.
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1.2.2  Rank minimization

In [25], the authors sought to determine the least order dynamic output feedback, 
utilizing the formulation akin to (1), capable of stabilizing a linear time-invariant sys-
tem. Their approach involved minimizing the trace, as opposed to the rank, resulting 
in a Semi-Definite Program (SDP) amenable to efficient solution techniques. Notably, 
their solution was specifically applicable to symmetric and square matrices. Building 
upon this work, [26] introduced a generalization of the aforementioned approach. This 
extension involved replacing the rank in the objective function with the summation of 
the singular values of the matrix, commonly known as the nuclear norm. The authors 
demonstrated that this modification yields the convex envelope of the non-convex rank 
objective, reducing to the original trace heuristic when the decision matrix assumes the 
form of a symmetric Positive Semi-Definite (PSD) matrix.

In [27], an alternative heuristic based on the logarithm of the determinant was intro-
duced as a surrogate for rank minimization within the subspace of PSD matrices. 
The authors demonstrated that this formulation could be effectively solved through a 
sequence of trace minimization problems. In a related study, [28] delved into existing 
trace and log determinant heuristics, exploring their applications for computing a low-
rank approximation in various scenarios. Specifically, the applications encompassed 
obtaining simple data models with interpretability by approximating covariance matri-
ces for a given dataset.

Drawing inspiration from the success of the ℓp quasi-norm (0 < p < 1) for sparse sig-
nal reconstruction, an alternative method aims to enforce low-rank structure using the 
Schatten-p quasi-norm. This norm is defined as the ℓp quasi-norm of the singular val-
ues. In [29], the authors addressed the matrix completion problem, which involves con-
structing a low-rank matrix based on a subset of its entries. Instead of minimizing the 
nuclear norm, they proposed a Schatten-p quasi-norm formulation and investigated its 
convergence properties. To enhance the robustness of the solution, [30] combined the 
Schatten-p quasi-norm for low-rank recovery with the ℓp quasi-norm (0 < p ≤ 1) of pre-
diction errors on the observed entries. The authors introduced an algorithm based on 
ADMM, which demonstrated superior numerical performance compared to other com-
pletion methods. In a non-convex approach for matrix optimization problems involv-
ing sparsity, [31] developed a technique using a generalized shrinkage operation. This 
method enhances the separation of moving objects from the stationary background by 
decomposing video into low-rank and sparse components, presenting advantages over 
the convex case.

1.3  Contributions

In spite of the commendable performance exhibited by the array of algorithms outlined 
in Sects.  1.2.1 and 1.2.2, each designed to address different relaxations of (1) and (2), 
it is essential to acknowledge their problem-specific nature, primarily grounded in the 
specific structural attributes of the convex constraint sets they address. This issue of spe-
cialization results in a lack of generality across problem domains.

In this paper, we present a versatile algorithm grounded in the principles of projec-
tions onto constraint sets. A distinctive feature of this approach lies in its minimal 
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reliance on problem-specific structural constraints, prioritizing the foundational 
characteristic of closed convexity. The works [32, 33] delve into a comprehensive 
exploration, analyzing the intrinsic attributes of the projection operation onto con-
straint sets. While the former addresses the issue without incorporating a crucial 
coupling condition for polynomial equations, the latter assumes prior knowledge of 
the projection technique for each given point on ℓp balls.

Initially, we propose an ADMM based algorithm, termed as ℓp Quasi-Norm ADMM 
(pQN-ADMM), designed to solve the ℓp quasi-norm relaxation of (2). At each itera-
tion, the pivotal operation involves computing Euclidean projections onto specific 
convex and non-convex sets. Notably, the algorithm exhibits two key properties: 1) 
Its computational complexity aligns with that of ℓ1 minimization algorithms, with the 
additional task of solving for the roots of a polynomial; 2) It does not necessitate a 
specific structure for the convex set.

Subsequently, we extend the application of the proposed algorithm to address the 
relaxation of (1) by embracing the Schatten-p quasi-norm. In this extension, we lever-
age the equivalence between minimizing the ℓp quasi-norm of the vector of singular 
values and minimizing the Schatten-p quasi-norm. Our study encompasses the fol-
lowing numerical instances: 

1 An example employing SVR, wherein the primary objective is the recovery of the 
sparsest feasible vector from given realizations.

2 A matrix completion example, where the overarching goal is the reconstruction of an 
unknown low-rank matrix based on a limited subset of observed entries.

3 Addressing a time-domain system identification problem, specifically tailored for 
minimum-order system detection.

Our numerical results compellingly showcase the competitiveness of pQN-ADMM 
when bench-marked against several state-of-the-art baseline methods.

Conclusively, given the inherent reliance of the derived algorithm on a convex pro-
jection step in each iteration, our endeavor is directed towards the formulation of an 
expedited algorithm accompanied by a rigorous mathematical convergence guaran-
tee. Focusing on a subset of problems where the constraint set manifests as a poly-
tope, we leverage principles from the Proximal Gradient (PG) method to formulate a 
rapid algorithm. The convergence of this algorithm is established with a rate of O(

1
K ) , 

where K denotes the iteration budget assigned to the algorithm.

2  Notation
Unless otherwise specified, we denote vectors with lowercase boldface letters, i.e., x , 
with i-th entry as xi , while matrices are in uppercase, i.e. X , with (i, j)-th entry as xi,j . 
For an integer n ∈ Z+ , [n]�={1, . . . , n} . 1 represents a vector of all entries equal to 1, 
while 1G(.) is an indicator function to the set G , i.e., it evaluates to zero if its argument 
belongs to the set G and is +∞ otherwise.

For a vector x ∈ R
n , the general ℓp norm is defined as:
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where, we let ‖x‖ be the well-known Euclidean norm, i.e., p = 2 . When 0 < p < 1 , the 
expression in (3) is termed as a quasi-norm satisfying the same axioms of the norm 
except the triangular inequality making it a non-convex function.

For a matrix X , ‖X‖ represents the spectral norm, which is defined as the square root 
of the maximum eigenvalue of the matrix XHX . XH refers to the complex conjugate 
transpose of X , denoted as X⊤ . On the other hand, ‖.‖f signifies the Frobenius norm of a 
matrix.

The Schatten-p quasi-norm of a matrix X is defined as:

where σi(X) is the i-th singular value of the matrix X . We utilize the ∗ subscript in (4) to 
differentiate the matrix Schatten-p quasi-norm from vector ℓp case defined in (3). When 
p = 1 , (4) yields the nuclear norm which is the convex envelope of the rank function. 
Throughout the paper, we consider a non-convex relaxation for the rank function, spe-
cifically p = 1/2.

We define the ceiling operator, denoted as ⌈·⌉ , the vectorization operator vec(X) ∈ R
mn , 

representing the vector obtained by stacking the columns of the matrix X ∈ R
m×n , and 

the Hankel operator Hankel(.), producing a Hankel matrix from the provided vector 
arguments. We define the sign operator, denoted as sign(·) , which outputs -1, 0, or 1 cor-
responding to a negative, zero, or positive argument, respectively.

3  Sparse vector recovery algorithm
3.1  Problem formulation

This section develops a method for approximating the solution of (2) using the following 
relaxation:

where p ∈ (0, 1] and V is a closed convex set. Problem (5) is convex for p ≥ 1 ; hence, 
can be solved to optimality efficiently. However, the problem becomes non-convex when 
p < 1 . We present a gradient-based algorithm and consequently, it may not always con-
verge to a global optimum solution but only to a stationary point. An epigraph equiva-
lent formulation of (5) is obtained by introducing the variable t = [ti]i∈[n]:

Let X ⊂ R
2 denote the epigraph of the scalar function |x|p , i.e., 

X = {(x, t) ∈ R
2 : t ≥ |x|p} , which is a non-convex set for p < 1 . Then, (6) can be cast 

as:

(3)�x�p
�
=

i∈[n]

|xi|
p

1
p

,

(4)�X�p,∗
�
=





�

i∈[min{m,n}]

σi(X)
p





1
p

,

(5)min
x∈V

�x�
p
p,

(6)
min
x,t

1⊤t,

s.t. ti ≥ |xi|
p, i ∈ [n], x ∈ V .
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ADMM, as introduced in [17], leverages the inherent problem structure to partition 
the optimization process into simpler sub-problems, which are solved iteratively. To 
achieve this, auxiliary variables y = [yi]i∈[n] and z = [zi]i∈[n] are introduced, leading to 
an ADMM reformulation of the problem defined in (7):

The dual variables associated with the constraints x = y and t = z are � and θ , respec-
tively. Throughout the paper, the colons in the constraints of an optimization problem 
serve as a means to associate the constraint (appearing on the left side of the colon) with 
its corresponding Lagrange multiplier (found on the right side of the colon). The Lagran-
gian function corresponding to (8) augmented with a quadratic penalty on the violation 
of the equality constraints with penalty parameter ρ > 0 , is given by:

Considering the two block variables (x, t) and (y, z) , ADMM consists of the following 
iterations:

Given the augmented Lagrangian function expressed in (9), it is evident from (10) 
that the variables x and t are iteratively updated by solving the following non-convex 
problem:

Exploiting the separable structure of (14), one immediately concludes that (14) can be 
split into n independent 2-dimensional problems that can be solved in parallel, i.e., for 
each i ∈ [n]:

(7)min
x,t

∑

i∈[n]

1X (xi, ti)+ 1⊤t, s.t. x ∈ V .

(8)
min
x,t,y,z

∑

i∈[n]

1X (xi, ti)+ 1V(y)+ 1⊤z,

s.t. x = y : �, t = z : θ .

(9)

Lρ(x, t, y, z, �, θ) =
∑

i∈[n]

1X (xi, ti)+ 1V(y)+ 1⊤z

+ �
⊤
(x − y)+ θ

⊤
(t − z)+

ρ

2

(

�x − y�2 + �t − z�2
)

.

(10)(x, t)k+1= argmin
x,t

Lρ(x, t, y
k , zk , �k , θk),

(11)(y, z)k+1= argmin
y,z

Lρ(x
k+1, tk+1, y, z, �k , θk),

(12)�
k+1= �

k + ρ(xk+1 − yk+1
),

(13)θ
k+1= θ

k + ρ(tk+1 − zk+1
).

(14)
min
x,t

�x − yk +
�
k

ρ
�2 + �t − zk +

θ
k

ρ
�2,

s.t. (xi, ti) ∈ X , i ∈ [n].
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where �X (.) denotes the Euclidean projection operator onto the set X  . Furthermore, (9) 
and (11) imply that y and z are independently updated as follows:

Algorithm 1 ADMM ( ρ > 0)

Algorithm 1 summarizes the proposed ADMM algorithm. It is clear that z , � , and θ 
merit closed-form updates. However, updating (x, t) requires solving n non-convex 
problems. Our strategy for dealing with this issue is presented in the following section.

3.2  Non‑convex projection

In this section, we present the method used to tackle the non-convex projection prob-
lem required to update x and t.

As it is clear from (15), x and t can be updated element-wise via performing a projec-
tion operation onto the non-convex set X  , one for each i ∈ [n] . The n projection prob-
lems can be run independently in parallel. We now outline the proposed idea for solving 
one such projection, i.e., we suppress the dependence on the index of the entry of x and 
t . For (x̄, t̄) ∈ R

2 , �X (x̄, t̄) entails solving:

If t̄ ≥ |x̄|p , then trivially �X (x̄, t̄) = (x̄, t̄) . Thus, we focus on the case in which t̄ < |x̄|p . 
The following theorem states the necessary optimality conditions for (18).

(15)(xi, ti)
k+1 = �X

(

yki −
�
k
i

ρ
, zki −

θ
k
i

ρ

)

,

(16)y
k+1

=�V

(

x
k+1

+
�
k

ρ

)

,

(17)z
k+1 = t

k+1 +
θ
k − 1

ρ
.

(18)min
x,t

g(x, t) � (t − t̄)
2
+ (x − x̄)2, s.t. t ≥ |x|p.
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Theorem 1 Let t̄ < |x̄|p , and (x∗, t∗) be an optimal solution of (18). Then, the following 
properties are satisfied: 

(a) sign(x∗) = sign(x̄),
(b) t∗ ≥ t̄,
(c) |x∗|p ≥ t̄,
(d) t∗ = |x∗|p.

Proof We prove the statements by contradiction as follows: 

(a) Suppose that sign(x∗) �= sign(x̄) , then: 

 i.e., (x∗−x̄)2>(0−x̄)2 . Hence, g(x∗, t∗)− g(0, t∗)>0 . Moreover, the feasibility 
of (x∗, t∗) implies that t∗ > 0 . Thus, (0, t∗) is feasible and attains a lower objective 
value than that attained by (x∗, t∗) . This contradicts the optimality of (x∗, t∗).

(b) Assume that t∗ < t̄ . Then: 

 Furthermore, by the feasibility of (x∗, t∗) , we have |x∗|p ≤ t∗ < t̄ . Thus, (x∗, t̄) is 
feasible and attains a lower objective value than that attained by (x∗, t∗) . This con-
tradicts the optimality of (x∗, t∗).

(c) Suppose that |x∗|p < t̄ , i.e., 

 We now consider two cases, x̄ > 0 and x̄ < 0 . First, let x̄ > 0 . Then, we have by 
(a) and (21) that 0 < x∗ < t̄

1
p . Since t̄ < |x̄|p , i.e., (x̄, t̄) /∈ X  , therefore t̄

1
p < x̄ and 

hence, 0 < x∗ < t̄
1
p < x̄ . Pick x0 > 0 such that |x0|p = t̄ , i.e., x0 = t̄

1
p . Then clearly, 

x∗ < x0 < x̄ . Thus, we have: 

 where the last inequality follows the just proven identity that x∗ < x0 < x̄ . Moreo-
ver, we have |x0|p = t̄ ≤ t∗ by (b) . Thus, (x0, t∗) is feasible and attains a lower objec-
tive value than that attained by (x∗, t∗) . This contradicts the optimality of (x∗, t∗) . 

On the other hand, let x̄ < 0 . Then, we have by (a) and (21) that −t̄
1
p < x∗ < 0 . 

Since t̄ < |x̄|p , i.e., (x̄, t̄) /∈ X  , then t̄
1
p < |x̄| , i.e., x̄ < −t̄

1
p . Therefore, x̄ < −t̄

1
p < x∗. 

Pick x0 < 0 such that |x0|p = t̄ , i.e., x0 = −t̄
1
p . Then, (22) also holds when x̄ < 0 . 

Note that |x0|p = t̄ ≤ t∗ by (b) . Thus, (x0, t∗) is feasible and attains a lower objective 
value than that attained by (x∗, t∗) . This contradicts the optimality of (x∗, t∗).

(19)|x∗ − x̄|=|x∗ − 0|+|x̄ − 0| > |x̄ − 0|,

(20)g(x∗, t∗)− g(x∗, t̄) = (t∗ − t̄)2 > 0.

(21)−t̄
1
p < x∗ < t̄

1
p .

(22)g(x∗, t∗)− g(x0, t
∗
) = (x∗ − x̄)2 − (x0 − x̄)2 > 0,



Page 10 of 28Sleem et al. EURASIP Journal on Advances in Signal Processing         (2024) 2024:22 

(d) The feasibility of (x∗, t∗) eliminates the possibility that t∗ < |x∗|p . Now let t∗ > |x∗|p 
and pick t0 = |x∗|p . Then, t̄ ≤ |x∗|p = t0 < t∗ , where the first inequality follows 
from (c) . Then, 0 ≤ t0 − t̄ < t∗ − t̄ . Thus, we have: 

 Furthermore, the feasibility of (x∗, t0) follows trivially from the choice of t0 . Thus, 
(x∗, t0) is feasible and attains a lower objective value than that attained by (x∗, t∗) . 
This contradicts the optimality of (x∗, t∗).

This concludes the proof.  �

We now make use of the fact that for (18), an optimal solution (x∗, t∗) satisfies 
t∗ = |x∗|p and hence, (18) reduces to solving:

The first order necessary optimality condition for (24) implies the following:

By the symmetry of the function |x|p , without loss of generality, assume that x∗ > 0 and 
let 0 < p = s

q < 1 for some s, q ∈ Z+ . A change of variables aq = x∗ plugged in (25) 
shows that finding an optimal solution for (18) reduces to finding a root of the following 
scalar degree 2q polynomial:

To determine �X (x̄, t̄) , the objective is to find a root denoted as a∗ for the polynomial 
in (26), while ensuring that the pair (a∗q , a∗s) minimizes the function g(x, t). Algorithm 2 
provides a summary of the method employed to address problem (18).

When both x∗ = 0 and t∗ = 0 , the objective function evaluates to g(0, 0) = x̄2 + t̄2 . 
To optimize the objective function while upholding the constraint t ≥ |x|p , the choice 
is made to set x∗ = 0 and t∗ = max{0, t̄} . This decision ensures that g(0, t∗) ≤ g(0, 0) . 
In instances where x̄ = 0 and t̄ ≤ |x̄|p , indicating that t̄ ≤ 0 , the choice is to set x∗ = 0 . 
Consequently, this results in g(0, t) = (t − t̄)2 = (t + |t̄|)2 . To meet the constraint 
t∗ ≥ |x∗|p , the optimal selection is t∗ = 0 , which stands as the most suitable option for 
minimizing g(0, t).

Algorithm 2 Non-convex projection ( p =
s
q
< 1)

(23)g(x∗, t∗)− g(x∗, t0) = (t∗ − t̄)2 − (t0 − t̄)2 > 0,

(24)min
x

(|x|p − t̄)2 + (x − x̄)2.

(25)p|x∗|p−1sign(x∗)(|x∗|p −Nt)+ x∗ −Nx = 0.

(26)a2q +
s

q

(

a2s − t̄as
)

− x̄aq .
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3.3  Convex projection

The convex projection for y-update in (16) can be formulated as the following convex 
optimization problem:

Convex problems can be solved by a variety of contemporary methods including bundle 
methods [34], sub-gradient projection [35], interior point methods [36], and ellipsoid 
methods [37]. The efficiency of optimization techniques relies mainly on exploiting the 
structure of the constraint set. As discussed in Sect. 1.3, our objective is to address the 
problem outlined in (5) with minimal assumptions on the set V . Our only requirement 
is that V is a closed and convex set. Nevertheless, if feasible, one should capitalize on the 
inherent structure of V to potentially streamline the computational complexity involved 
in solving (27).

4  Rank minimization algorithm
We consider the problem in (1) and propose a method for approximating its solution effi-
ciently. The Schatten-p heuristic of (1) can be written as:

where L = min{m, n} and σi(X) is the ith singular value of X . In the scenario where 
p = 1 , (28) represents a convex problem, akin to the nuclear norm heuristic. We now 
consider a non-convex relaxation, specifically for the case where 0 < p < 1 . The problem 
in (28) attains an epi-graph form:

such that t = [ti]i∈[L] . Defining the epi-graph set Y for the function σ(X) , where 
Y

�
={(σ (X), t)∈R2 : |σ(X)|p≤ t} ⊆ R

2 , the problem in (29) can be written as:

To formulate the problem in a manner amenable to ADMM, we introduce auxiliary vari-
ables, Y ∈ R

m×n and z = [zi]i∈[L] . This transformation leads to the following representa-
tion of the problem in (30):

(27)yk+1 = argmin
y∈V

∥

∥

∥

∥

∥

y −

(

xk+1 +
�
k

ρ

)∥

∥

∥

∥

∥

2

.

(28)min
X∈M

�X�
p
p,∗

�
=

L
∑

i=1

|σi(X)|
p,

(29)
min
X,t

1⊤t,

s.t. |σi(X)|
p ≤ ti, i ∈ {1, . . .L}, X ∈ M,

(30)min
X,t

1⊤t + 1M(X)+

L
∑

i=1

1Y(σi(X), ti).

(31)
min
X,t,Y,z

1⊤z + 1M(Y)+

L
∑

i=1

1Y(σi(X), ti),

s.t. X = Y : �, t = z : θ ,
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where � , θ are the dual variables associated with X and t respectively. Similar to (9), the 
Lagrangian function associated with (31), augmented with a quadratic penalty for the 
equality constraint violation with a parameter ρ > 0 , can be represented as:

where Tr{.} is the trace operator. Given the 2-tuples (X, t) and (Y, z ), the ADMM itera-
tions are as follows:

4.1  (X, t) Update

By completing the square and employing some straightforward algebraic manipulations, 
it can be demonstrated that the problem described in (33) is equivalent to:

where X̄k �=Yk − �
k

ρ
 and t̄k �=zk − θ

k

ρ
 . For simplicity, we will omit the iteration index k. 

Let’s assume that X = P�Q⊤ and X̄ = U�V⊤ represent the Singular Value Decomposi-
tion (SVD) of X and X̄ , respectively. Here, � and � are diagonal matrices with the singu-
lar values associated with X and X̄ , while P , U , Q , and V are unitary matrices. Following 
the steps in [38, Theorem 3], we can express the first term of (38) as:

(32)
Lρ(X,Y, t, z,�, θ)=1⊤z+1M(Y)+

L
∑

i=1

1Y(σi(X), ti)

+Tr{�⊤
(X−Y)}+θ

⊤
(t−z)+

ρ

2
(�X−Y�2f +�t−z�2),

(33)(X, t)k+1 = argmin
X,t

Lρ(X,Y
k , t, zk ,�k , θk),

(34)Yk+1 = argmin
Y

Lρ(X
k+1,Y, tk+1, zk ,�k , θk),

(35)zk+1 = argmin
z

Lρ(X
k+1,Yk+1, tk+1, z,�k , θk),

(36)�
k+1 = �

k + ρ(Xk+1 − Yk+1
),

(37)θ
k+1 = θ

k + ρ(tk+1 − zk+1
).

(38)
min
X,t

∥

∥

∥
X − X̄k

∥

∥

∥

2

f
+

∥

∥

∥
t − t̄k

∥

∥

∥

2
,

s.t. |σi(X)|
p ≤ ti, i ∈ {1, . . .L},

(39)

∥

∥X − X̄
∥

∥

2

f
=

∥

∥

∥P�Q⊤ −U�V⊤
∥

∥

∥

2

f

=
∥

∥

∥P�Q⊤
∥

∥

∥

2

f
+

∥

∥

∥U�V⊤
∥

∥

∥

2

f
− 2T {X⊤X̄}

(a)
=Tr{�⊤

�}+Tr{�⊤
�}−2Tr{Q�

⊤P⊤U�V⊤}

(b)
≥Tr{�⊤

�}+Tr{�⊤
�}−2Tr{�⊤

�}=��−��2f ,
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where (a) is because P⊤P = Q⊤Q = U⊤U = V⊤V = IL×L with IL×L being an identity 
matrix of size L , and exploiting the circular property of the trace while (b) holds is from 
the main result of [39]. In order to make 

∥

∥X − X̄k
∥

∥

2

f
 achieve its derived lower bound, we 

set P = U and Q = V.
The problem in (38) is then equivalent to:

where x = [xi]i∈[L] and x̄ = [x̄i]i∈[L] are the vectors of singular values of the matri-
ces X and X̄ respectively. The optimal solution X∗ for (38) can be determined by first 
finding the optimal x∗ for (40), and then obtaining X∗ = U�

∗V⊤ , where �∗ = diag(x∗) 
and diag(.) denotes an operator that transforms a vector into its corresponding diago-
nal matrix. Given that the problem in (40) is separable, we will proceed by omitting the 
index i and focus solely on solving:

It can be realized that (41) is similar to (18), hence, its optimal solution can be found by 
applying Algorithm 2.

4.2  (Y, z) update

Upon updating (X, t) with � and θ held constant, the problem in (34) can be reformu-
lated as:

which is clearly a convex optimization problem representing the projection of the point 
Xk+1 + �

k

ρ
 on the set M and can be solved by various known class of algorithms as dis-

cussed in Sect. 3.3. Following the update of Y , the update for z in (35) is as follows:

which results in a closed-form solution for zk+1 = tk+1 + θ
k−1
ρ

.

5  Proximal gradient algorithm
The pQN-ADMM algorithm adeptly handles the ℓp relaxation of (2), refraining from 
assuming any specific structure for V beyond its closed and convex nature. Primarily, the 
algorithm hinges on the computation of Euclidean projections onto V , as outlined in (27).

In this section, we consider a sub-class of problems with a specific structure for the 
convex set of the form V = {x : f (x) ≤ 0} , where f (x) is a convex function with Lip-
schitz continuous gradient. i.e., f is L-smooth: 

∥

∥∇f (x)− ∇f (y)
∥

∥ ≤ L
∥

∥x − y
∥

∥ for all 
x, y ∈ R

n . Specifically, in order to solve:

(40)
min
x,t

�x − x̄�2 +
∥

∥t − t̄
∥

∥

2
,

s.t. |xi|
p ≤ ti, i ∈ {1, . . .L},

(41)min
x,t

(x − x̄)2 + (t − t̄)2, s.t. |x|p ≤ t.

(42)Yk+1=argmin
Y∈M

∥

∥

∥

∥

∥

Y−

(

Xk+1+
�

k

ρ

)∥

∥

∥

∥

∥

2

f

,

(43)zk+1 = argmin
z

1⊤z +
ρ

2

∥

∥

∥

∥

∥

z −

(

tk+1 +
θ
k

ρ

)∥

∥

∥

∥

∥

2

,



Page 14 of 28Sleem et al. EURASIP Journal on Advances in Signal Processing         (2024) 2024:22 

we aim to develop an efficient algorithm with some convergence guarantees for the fol-
lowing Lagrangian relaxation:

where µ ≥ 0 is the dual multiplier that captures the trade-off between solution sparsity 
and fidelity. It is imperative to acknowledge that (44) and (45) exhibit a relationship, 
albeit not being strictly equivalent.

A canonical problem for the regularized risk minimization has the following form:

where h is an L-smooth loss function, and g represents the regularizer term. In cases 
where both g and h exhibit convexity, the Proximal Gradient (PG) algorithm [40] can 
iteratively compute a solution to (46) through PG steps.

where proxg/�(.)
�
= argmin

x
g(x)+ �

2
�x − ·�2 , for some constant � . When g is convex, the 

proximal map proxg/� is well-defined, thus, the PG step can be computed.
In comparing both (45) and (46), it is observed that the convexity assumption of g(x) 

in (46) is not met for ‖x‖pp in (45). When the regularizer is a continuous non-convex 
function, the proximal map proxg/� may not exist, and computing it in closed form 
becomes a challenging task.

On the contrary, in the case of ‖x‖pp , leveraging similar reasoning as employed in the 
non-convex projection step introduced in Sect.  3.2, our objective is to derive an ana-
lytical solution that can be efficiently computed. Specifically, assuming p ∈ (0, 1) is a 
positive rational number, the proposed method for computing the proximal map of ‖x‖pp 
involves finding the roots of a polynomial of order 2q, where q ∈ Z+ such that p = s/q 
for some s ∈ Z+.

Since f is L-smooth, for all x, y ∈ R
n , we have:

Given xk , replacing f (x) with the upper bound in  (48) for y = xk , the prox-gradient 
operation naturally arises as follows:

(44)min
x

�x�
p
p, s.t. f (x) ≤ 0,

(45)min
x

F(x)
�
=�x�

p
p +

µ

2
f (x),

(46)min
x

g(x)+ h(x),

(47)xk+1 = proxg/�(x
k − ∇h(xk)/L),

(48)f (x) ≤ f (y)+∇f (y)⊤(x − y)+
L

2

∥

∥x − y
∥

∥

2
.

(49)xk+1 = argmin
x

�x�
p
p +

µ

2

[

f (xk)+ ∇f (xk)⊤(x − xk)+
L

2

∥

∥

∥x − xk
∥

∥

∥

2
]

.
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By completing the square, (49) yields to:

Defining x̄k �
= xk − 1

L∇f (xk) , (50) can be rewritten as:

which is clearly a separable structure in the entries of x . Therefore, for each i ∈ [n] , we 
have:

where ḡ : R → R+ such that ḡ(t) = |t|p for some positive rational p ∈ (0, 1).
Next, we consider a generic form of (52), i.e., given some ̄t ∈ R , we would like to compute:

The first-order optimality condition for (53) can be written as:

Using similar arguments as in Sect.  3.2, we can conclude that the optimal solution t∗ 
attains the property that sign(t∗) = sign(t̄) . Without loss of generality, exploiting the 
symmetry of the function ḡ , we only consider the case when t̄ > 0 ; hence, the optimal 
solution t∗ is the smallest positive root of the following polynomial:

Similar to (26), suppose 0 < p = s
q < 1 for some positive integers s and q. By employing 

the variable transformation a � (t∗)
1
q , the optimality condition in (55) is simplified to 

the task of finding the roots of a polynomial of degree 2q:

(50)xk+1 = arg min
x

�x�
p
p +

µL

4

∥

∥

∥

∥

x−

(

xk −
1

L
∇f (xk)

)∥

∥

∥

∥

2

.

(51)

xk+1 = argmin
x

�x�
p
p +

µL

4

∥

∥

∥
x − x̄k

∥

∥

∥

2

= argmin
x

n
∑

i=1

|xi|
p +

µL

4
(xi − x̄ki )

2,

(52)xk+1
i =argmin

xi

|xi|
p+

µL

4
(xi−x̄ki )

2 = prox
ḡ/ µL

2
(x̄ki ),

(53)t∗ = argmin
t

{

|t|p +
µL

4
(t − t̄)2

}

.

(54)p|t∗|p−1sign(t∗)+
µL

2
(t∗ − t̄) = 0.

(55)p|t∗|p−1 +
µL

2
(t∗ − t̄) = 0.

(56)a2q − t̄aq +
2s

qµL
as = 0.
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Algorithm 3 Accelerated PG algorithm

In order to solve (44) effectively, we will employ Algorithm 3, which implements the 
non-convex inexact Accelerated Proximal Gradient (APG) descent method as presented 
in [41, Algorithm  2]. In summary, Algorithm  3 is designed to tackle composite prob-
lems of the form in (46), making the assumptions that h is L-smooth and g is a proper 
lower-semicontinuous function such that F � h+ g is bounded from below and coer-
cive. This means that lim�x�→∞ F(x) = +∞ . It is important to note that neither h nor g 
are required to be convex. Algorithm 3 can be summarized as follows:

• An extrapolation yk is generated as introduced in [42] for the APG algorithm (step 
3).

• Steps 4 through 9 encompass a mechanism for a non-monotone update of the objec-
tive function. Specifically, F(yk) undergoes scrutiny concerning its relation to the 
maximum among the most recent l objective values. Step 9 is responsible for adjust-
ing the gradient step accordingly. This adjustment occasionally allows yk to increase 
the objective, resulting in a situation where F(yk) becomes lower than the maximum 
objective value observed in the latest l iterations.

• Steps 11 and 12 represent the solution of the PG step using the non-convex projec-
tion method.

In the next part, we show that Algorithm 3 converges to a critical point and it exhibits a 
convergence rate of O(

1
K ) , where K is the iteration budget that is given to the algorithm.



Page 17 of 28Sleem et al. EURASIP Journal on Advances in Signal Processing         (2024) 2024:22  

Definition 1 ([43]) The Frechet sub-differential of F at x is

The sub-differential of F at x is

Definition 2 [43] x is a critical point of F if 0 ∈ ∂g(x)+∇h(x).

By comparing (46) and (45), it can be realized that the functions g(x) and h(x) in defi-
nition 2 are equal to ‖x‖pp and µ2 f (x) , respectively.

Theorem  2 The sequence xk generated from Algorithm  3 has at least one limit point 
and all the generated limit points are critical points of (45). Moreover, the algorithm con-
verges with rate O(

1
K ) , where K is the iteration budget given to the algorithm.

Proof It can easily be verified that our problem in (45) satisfies all required assump-
tions for Algorithm 3. Indeed, 

1 The function g(x) = �x�
p
p is a proper and lower semi-continuous function.

2 The gradient of h(x) = µ

2 f (x) is L̄-Lipschitz smooth, i.e., 
∥

∥∇h(x)−∇h(y)
∥

∥ ≤ L̄
∥

∥x − y
∥

∥ 
for all x, y ∈ R

n , with L̄ = µ

2 L.
3 F(x)=g(x)+h(x) is bounded from below, i.e., F(x)≥0.
4 lim�x�→∞ F(x) = ∞.

5 Let G(x)�=x − proxg/�(x − ∇h(x)/L) . From [43, 44], ‖G(x)‖2 can be used to meas-
ure how far x is from optimality. Specifically, x is a critical point of (46) if and only if 
G(x) = 0.

6 The introduced non-convex projection method is an exact solution for the proximal 
gradient step. This is because it is based on finding the roots of a polynomial of order 
2q in (56).

Therefore, from Theorem  4.1 and Proposition 4.3 of [41], the sequence generated by 
Algorithm 3 converges to a critical point of (45). Additionally, 

∥

∥G(xk)
∥

∥

2 converges with 
rate O(

1
K ) , thereby completing the proof.  �

 Remark 1
The global convergence of several exact iterative methods that solve (46) has been 
explored, under the framework of Kurdyka-Lojasiewicz (KL) theory, in various additional 
literature including [43, 45–48]. Other work (see [49] and references therein) considered 
the linear convergence of non-exact algorithms with relaxations on the assumptions of KL 
theory, however, it is difficult to verify that the sequence generated by Algorithm 3 satisfies 
the relaxed assumptions stated in [49].

(57)∂̂F(x)
�
=
{

u : lim
y �=x

lim
y→x

F(y)− F(x)− u⊤(y − x)
∥

∥y − x
∥

∥

≥ 0
}

.

(58)∂F(x)
�
={u : ∃xk → x, F(xk) → F(x) and uk ∈ ∂̂F(xk) → u as k → ∞}.
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6  Numerical results
In this section, we present numerical examples to illustrate the application of the 
pQN-ADMM algorithm, as expounded in Algorithm 1, and the non-convex projection 
method delineated in Algorithm  2. Within each of the ensuing examples, we conduct 
comparative analyses with the convex ℓ1 relaxation solution, achieved through the use of 
the MOSEK solver [50], and alternative ℓ0.5-based solutions previously proposed in the 
literature.

The degree of the polynomial for which the roots are determined during the non-con-
vex projection step depends on the value of q in the context of p = s

q . It might lead one 
to speculate that the computational complexity of the non-convex projection step is con-
tingent on the specific value of p, suggesting that lower values of p result in slower algo-
rithm performance. In order to explore this aspect, we systematically performed the 
non-convex projection step 200 times on a vector of 1024 elements, as part of a sparse 
vector reconstruction example. Throughout this process, we systematically varied the 
values of the parameter p, considering a range of p values, specifically p ∈ { 12 ,

1
3 ,

1
4 ,

1
5 } . 

The average time to perform the non-convex projection for the entire vector, where the 
roots of (26) for each p are computed using the “root” command in MATLAB, is 
observed to be nearly constant, approximately 0.03 s. Furthermore, our numerical exper-
iments in this particular example indicated that for p ∈ { 13 ,

1
4 ,

1
5 } , no substantial improve-

ment over the ℓ0.5 case was observed. As a result, these cases are currently undergoing 
further investigation and are not included in the numerical results section.

6.1  Sparse vector recovery (SVR)

In this section, we implement a sparse vector reconstruction problem and compare 
the solution of the pQN-ADMM algorithm with the ℓ1 convex relaxation along with 
an ℓ0.5 relaxation solution and Linear Approximation for Index Tracking (LAIT), as 
presented in [51] and [52], respectively.

Let n = 210 and m = n/4 , randomly construct the sparse binary matrix, M ∈ R
m× n

2 , 
with a few number of ones in each column. The number of ones in each column of 
M is generated independently and randomly in the range of integers between 10 and 
20, and their locations are randomly chosen independently for each column. Let 
U = [M,−M] , which is the vertical concatenation of the matrix M and its negative. 
Following the same setup in [53], the column orthogonality in U is not satisfied. Let 
xopt ∈ R

n be a reference signal with �xopt�0 = ⌈0.2n⌉ , where the non-zero locations 
are chosen uniformly at random with the values following a zero mean, unit vari-
ance Gaussian distribution. Let v = Uxopt + n be the allowable measurement, where 
n ∈ R

m is a Gaussian random vector with zero mean and co-variance matrix σ 2Im×m , 
where I is the identity matrix. The sparse vector is reconstructed from v by solving 
(5) with V = {x : �Ux − v�/�v� − ǫ ≤ 0} , where ǫ = 3σ

�v� . All the algorithms are termi-
nated if �xk − xk−1�/�xk−1� ≤ 10−4 or a budget of 200 iterations is consumed.

Figure  1 depicts the correlation between sparsity levels and noise variances con-
cerning solutions derived through ℓ1 norm minimization, ℓ0.5 , LAIT, and pQN-
ADMM techniques. A threshold of 10−6 was imposed, designating entries of the 
solution vector as zero if they fell below this threshold. The reported outcomes are 
based on the average results obtained from 20 independently conducted random 
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iterations. Notably, it becomes evident that the pQN-ADMM algorithm consistently 
yields solutions with higher sparsity levels in comparison to its counterpart base-
line methods, across a range of σ 2 values. As σ 2 increases, the sparsity level for all 
approaches decreases, attributable to the heightened scarcity of information pertain-
ing to the original signal within the realization vector, thereby compromising the pre-
cision of the reconstruction process.

6.2  Rank minimization problem (RMP)

Within this section, our primary focus is directed towards the exploration of the 
pQN-ADMM algorithm within the RMP framework, as presented in Sect. 4. We com-
mence by engaging in a matrix completion scenario, presenting an extensive com-
parative analysis pitting the pQN-ADMM algorithm against various baseline methods 
rooted in the Schatten-p quasi-norm framework.

Additionally, we delve into a time domain system identification example. Notably, 
we restrict our comparative analysis to the convex nuclear norm. This singularity in 
focus arises from the unique constraint nature of the problem at hand, specifically the 
Hankel constraint. To the best of our knowledge, there are no other Schatten-p-based 
algorithms capable of addressing constraints of this specific nature in the proposed 
formulation. This serves to underscore the remarkable versatility of the pQN-ADMM 
algorithm in handling a broad spectrum of constraints, be they within the vector or 
matrix domain.

6.2.1  Matrix completion

In this section, we apply our algorithm (pQN-ADMM) to a matrix completion exam-
ple and compare the result to the Matrix Iterative Re-weighted Least Squares (Matrix-
IRLS) [54, 55], truncated Iterative Re-weighted unconstrained Lq (tIRucLq) [56] and 
Iterative Re-weighted Least Squares (sIRLS-p & IRLS-p) [57] algorithms. The matrix 
completion problem is a special case of the low-rank minimization where a linear 
transform takes a few random entries of an ambiguous matrix X∈Rm×n . Given only 

Fig. 1 The influence of noise variance on the sparsity of solutions generated by ℓ1 norm, ℓ0.5 , LAIT, and the 
pQN-ADMM
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these entries, the goal is to approximate X and find the missing ones. The matrix com-
pletion problem with low-rank recovery can be approximated by,

where A : Rm×n → R
q is a linear map with q ≪ mn and b ∈ R

q . To facilitate the appli-
cation of the aforementioned algorithms, the linear transform A(X) will be reformulated 
as Avec(X) , where A ∈ R

q×mn and vec(X) ∈ R
mn represents a vector obtained by stack-

ing the columns of the matrix X.
A random matrix M ∈ R

m×n with rank r is created using the following method: 1) 
M = MLM

⊤
R  , where ML ∈ R

m×r and MR ∈ R
n×r . 2) The entries of both ML and MR are 

i.i.d Gaussian random variables with zero mean and unit variance. Let M̂ = M + Z , 
where Z ∈ R

m×n is a Gaussian noise with each entry being an i.i.d Gaussian random 
variable with zero mean and variance σ 2 . The vector b is then created by selecting 
random q elements from vec(OM) . Since b = Avec(OM) , one can easily construct the 
matrix A which is a sparse matrix where each row is composed of a value 1 at the 
index of the corresponding selected entry in the vector b while the rest are zeros. We 
set m = n = 100 , r = 5 and p = 0.5 . Let dr = r(m + n − r) denotes the dimension of 
the set of rank r matrices and define s = q

mn as the sampling ratio. We assume that 
s = 0.195 which yields to q = 1950 . It can be realized that drq < 1 . We set σ = 0.1 , 
ǫ = 10−3 , and let the algorithms terminate if a budget of 1000 iterations is reached. To 
compare the solutions across different algorithms, where X∗ represents the solution 
for (59), we evaluate the average of 50 runs based on two metrics: a) the Relative 
Frobenius Distance (RFD) to the matrix M , defined as RFD = �X∗−M�f

�M�f
 , and b) the Rel-

ative Error to Singular (REtS) values of M , given by REtSi = |σi(X
∗
)−σi(M)|

σi(M)
 for 

i ∈ [min{m, n}].
In Fig. 2a, b, we report the average RFD and REtS values for all the algorithms. Despite 

that, all the baselines are designed to exploit the specific structure of the matrix comple-
tion problem, described in (59), while the proposed pQN-ADMM doesn’t, it is competi-
tive against them all. This in turn shows the effectiveness of the pQN-ADMM algorithm in 
solving the rank minimization problems without requiring any prior information about the 
structure of the associated convex set.

(59)min
X

�X�
p
p,∗, s.t. �A(X)− b� ≤ ǫ,

Fig. 2 The RFD and REtS average values
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6.2.2  Time domain system identification

We consider a stable Single Input Single Output (SISO) system operating in discrete time, 
wherein the input vector u ∈ R

T corresponds to a temporal span denoted by T, represent-
ing the number of input samples. The system is characterized by an impulse response con-
sisting of a fixed number of samples denoted as n. The resultant output of the system is 
represented by y ∈ R

m . However, in practical scenarios, only noisy realizations, denoted as 
ŷ , are observable. This realization is expressed as ŷ�

=y + z = h ⊛ u + z , where h ∈ R
n sig-

nifies the system’s original impulse response, z ∈ R
m is a random vector with entries drawn 

independently from a uniform distribution within the range [−0.25, 0.25] , and ⊛ denotes 
the convolution operator.

Exploiting the window property of convolution, which asserts that m = n+ T − 1 , we 
establish the relationship among the components ui , hi , and yi through the linear convolu-
tion relation yi =

∑∞
j=−∞ hjui−j . Herein, ui , hi , and yi represent the ith components of the 

vectors u , h , and y , respectively. To succinctly represent the convolution, let T ∈ R
m×n be 

the Toeplitz matrix formed by the input u , allowing us to express h ⊛ u = hT⊤ . Further-
more, assuming x ∈ R

n to be an impulse response variable, we introduce X ∈ R
n×n as a 

Hankel matrix formed by the entries of x . From [58–61], the minimum order time domain 
system identification problem can be formulated as: 

 (60b) ensures that X is a Hankel matrix and (60c) holds to make the result by applying 
the input, u , to the optimal impulse response, x , fit the available noisy data, ŷ , in a non-
trivial sense. Defining the convex set C�={X∈Rn×n :

∥

∥ŷ−xT⊤
∥

∥

2
−ǫ ≤ 0,X=Hankel(x)} , 

(60) can be cast as:

which is clearly identical to the problem in (1). The problem was solved using the same 
pQN-ADMM approach discussed in Sect. 4.

Let T = m = 50 and n = 40 . It is pertinent to note that m < T + n− 1 , is a reasonable 
assumption aligning with practical applications where only a specific window is avail-
able to observe the output. The simulation is conducted across 5 distinct original system 
orders denoted by η ∈ {2, 4, 6, 8, 10} . An input vector, u , is generated, with its elements 
being independent and following a uniform distribution over the interval [−5, 5] . For 
each η : 

(60a)min
X

Rank(X),

(60b)s.t. X = Hankel(x),

(60c)
∥

∥

∥ŷ − xT⊤
∥

∥

∥

2
≤ ǫ,

(61)min
X∈C

Rank(X),
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1 Fifty random stable systems are generated using the ’drss’ command in MATLAB.
2 The generated input is applied to each system, yielding the corresponding noisy out-

put ŷ.
3 Given the output ŷ , the problem specified in (60) is solved, and the rank of the cor-

responding system is computed using singular value decomposition.
4 The obtained results are averaged to derive the corresponding average rank for each 

original η.

Figure  3 presents the average rank results obtained through the nuclear norm and 
pQN-ADMM heuristics. The outcomes correspond to two distinct threshold values, 
wherein the threshold is defined as the value below which the singular value is con-
sidered zero. Notably, the introduced pQN-ADMM approach demonstrates superior 
performance compared to the nuclear norm heuristic for both threshold values. Further-
more, as the threshold value decreases from 10−4 to 10−5 , the pQN-ADMM’s behavior 
remains consistent, while the average rank for the nuclear norm exhibits an increase. 
This observation underscores the robustness of the derived pQN-ADMM relative to the 
nuclear norm approach.

Table 1 provides the standard deviation values for the algorithms. It is evident that the 
standard deviation remains constant for the pQN-ADMM when altering the threshold; 
conversely, it increases for the nuclear norm as the threshold value decreases.

Table 1 Standard deviation for different threshold values

Threshold = 10−4 Threshold = 10−5

η=2 η=6 η=10 η=2 η=6 η=10

Nuclear norm 2.3907 6.6668 7.2572 6.9877 11.2638 11.7854

pQN-ADMM 0.5292 0.9042 1.0861 0.5325 0.9113 1.0861

Fig. 3 Average rank vs. original system order. Red and cyan colors are for the nuclear norm and pQN-ADMM 
algorithm, respectively
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6.3  Accelerated proximal gradient (APG) algorithm

In this section, we present numerical results for the APG method, as outlined in Algo-
rithm  3. Our primary objective is to address the minimization problem (45) with 
f (x) = �Ax − b�2.

Consistent with the approach in [62], we initiate the process by generating the target 
signal x∗ through:

where the design parameters � ⊂ [n] , and �(1)
i ,�

(2)
i  for i ∈ � are chosen as follows: 

1 The index set � ⊂ [n] is constructed by selecting a subset of [n] with cardinality s 
uniformly at random;

2 {�(1)
i }i∈� are Independent and Identically Distributed (IID) Bernoulli random vari-

ables taking values ±1 with equal probability;
3 {�(2)

i }i∈� are IID uniform [0, 1] random variables.

The measurement matrix A ∈ R
m×n is constructed as a partial Discrete Cosine Trans-

form (DCT) matrix, with its rows corresponding to m < n frequencies. Specifically, 
these m indices are selected uniformly at random from the set [n]. The noisy measure-
ment vector b ∈ R

m is subsequently defined as b = A(x∗ + ǫ1)+ ǫ2 , where ǫ1 and ǫ2 are 
IID random vectors with entries following zero mean Gaussian distributions with vari-
ances σ 2

1  and σ 2
2  , respectively.

In our experiments, n = 4096 , s = ⌈0.5m⌉ and the APG algorithm memory to 5, i.e., 
l = 5 in Algorithm  3. Following the medium noise setup in [63], we set σ1 = 0.005 , 
σ2 = 0.001.

For the objective function f (x) = �Ax − b�2 , the Lipschitz constant is given by 
L = 2�A�2 . Our experimental design encompasses varying values of m, representing 
the number of noisy measurements, and µ , serving as the trade-off parameter in (45). 
For each unique combination of (m,µ) , we conduct 20 random instances of the triplet 
(x∗,A,b) to account for the inherent statistical variability of the problem. Each ran-
dom instance is subsequently solved using Algorithm  3, and the average performance 
is reported. The termination criterion for Algorithm  3 is defined as the relative error 
between consecutive iterates satisfies 

∥

∥xk − xk−1
∥

∥/

∥

∥xk−1
∥

∥ ≤ 10−5.
In our experiments, we conducted a comparative analysis of solving (45) for p = 0.5 

against p = 1 , corresponding to ℓ1-optimization for sparse recovery. Specifically, for 
p = 0.5 , denoting ℓ0.5 minimization, we employed Algorithm 3, referred to as ℓ0.5 exact. 
Additionally, we utilized Algorithm 2 from [64], denoted as ℓ0.5 approx. Conversely, for 
p = 1 , where the ℓ1-minimization problem is convex, we employed the FISTA algorithm 
from [42]. The solutions are denoted as x̄ , while the target signal, derived from (62), is 
denoted as x∗ . In Algorithm 3, we initialized x0 as a zero vector, and x1 was set to the ℓ1 
norm solution.

Figures 4 and 5 illustrate the relationship between average error, sparsity, and µ for var-
ious values of n/m. A discernible trend is observed wherein the average error decreases 
while sparsity increases with an increase in µ . When µ is small, greater emphasis is 

(62)x∗i =

{

�
(1)
i 103�

(2)
i , ∀ i ∈ �,

0, ∀ i ∈ [n] \�;
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Fig. 5 Sparsity vs µ for different values of n/m. Yellow and cyan shades are the standard deviations for the 
exact and approximate ℓ0.5 quasi-norms, respectively

Fig. 4 Average error vs µ for different values of n/m. Yellow and cyan shades are the standard deviations for 
the exact and approximate ℓ0.5 quasi-norms, respectively
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placed on the loss function, emphasizing ℓ0.5 quasi-norm minimization. Consequently, 
the sparsity level, as depicted in Fig. 5, remains low. Conversely, for higher values of µ , 
more weight is assigned to the regularization term’s minimization, resolving �Ax − b�2 , 
resulting in decreased error (Fig. 4) accompanied by an increase in sparsity.

Figure 6 provides insight into the statistics of the number of iterations until conver-
gence for both the ℓ0.5 exact and approximate algorithms. Notably, with a sufficient 
number of available realizations, specifically for n/m = 8 and n/m = 16 , both algo-
rithms require approximately the same number of iterations. However, as the number of 
available realizations decreases, particularly for n/m = 32 and higher, the exact proximal 
solution exhibits a significantly lower number of iterations to converge. This observa-
tion, coupled with the findings in Figs.  4 and 5, suggests that our algorithm not only 
yields a comparable solution to the approximate method but also converges with fewer 
iterations.

7  Conclusion
In this paper, we introduced a non-convex ADMM algorithm, denoted as pQN-
ADMM, designed for solving the ℓp quasi-norm minimization problem. Significantly, 
our proposed algorithm serves as a versatile approach for tackling ℓp problems, as it 
does not rely on specific structural assumptions for the convex constraint set. Moreo-
ver, we delved into the problem of solving a non-convex relaxation of RMPs utilizing 
the Schatten-p quasi-norm. This relaxation was established as the ℓp minimization of 

Fig. 6 Iterations count vs µ for different values of n/m 
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the singular values of the variable matrix, rendering it amenable to the pQN-ADMM 
algorithm. For scenarios involving constraints defined by differentiable functions 
with Lipschitz continuous gradients, a proximal gradient step was employed, miti-
gating the need for a convex projection step. This enhancement not only accelerates 
the algorithm but also ensures its convergence. Illustrating the numerical results, we 
applied the pQN-ADMM to diverse examples, encompassing sparse vector recon-
struction, matrix completion, and system identification. The algorithm demonstrated 
competitiveness against variousℓp-based baselines, underscoring its efficacy across a 
spectrum of applications.
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