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Abstract 

Although some existing sparse representation (SR) methods are robust for target 
detection in passive bistatic radar (PBR), they still face the challenges of high com-
putational complexity and poor detection performance for extremely low-signal-
to-clutter ratio (SCR) target. So, an average effective subcarrier (AES)-domain sparse 
representation approach is investigated in this paper. Firstly, the AES-based SR model 
is proposed to solve the problem of high computational complexity, which is estab-
lished by utilizing the sparseness of the orthogonal frequency-division multiplex-
ing (OFDM) with cyclic prefix (CP) signals in each effective subcarrier domain. Then, 
considering the difficulty of detecting extremely low-SCR targets, clutter cancellation 
is implemented by the SR-based optimization model. Two AES-S algorithms, namely 
AES-S-based clutter cancellation in the time domain (AES-S-T) and AES-S-based clutter 
cancellation in the subcarrier domain (AES-S-C), are proposed, and the computational 
complexity is further reduced. Finally, extensive simulation and experimental results 
illustrate that the proposed algorithms have good detection performance and low 
computational complexity in PBR detection scene.

Keywords: Passive bistatic radar, Sparse representation, Effective subcarrier, Low 
signal-to-clutter ratio

1 Introduction
Passive bistatic radars (PBRs) do not emit electromagnetic waves, but use a variety of 
communication and broadcasting signals as illuminators of opportunity, to passively 
receive the reflected echo signals from target for target detection. Nowadays, many digi-
tal communication signals, such as Digital Audio Broadcasting (DAB) [1], Digital Video 
Broadcasting on Terrestrial (DVB-T) [2], Digital Radio Mondiale (DRM) [3], China Digi-
tal Radio (CDR) [4], Wi-Fi [5] and Global System for Mobile Communications (GSM) 
[6], are modulated by orthogonal frequency-division multiplex (OFDM) modulation 
with cyclic prefix (CP-OFDM). The continuous radiation and omnidirectional low-alti-
tude coverage of these signals make them easy to detect low-altitude targets. Thus, these 
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advantages make CP-OFDM-based PBR become a research hotspot. In CP-OFDM-
based PBR, the target information is commonly estimated from the range-Doppler 
(RD) map obtained by the cross-ambiguity function (CAF) of surveillance and reference 
channel signals. However, because of the complexity of propagation environment, the 
unwanted direct-path signal and multipath echoes (referred to as clutter) in PBR can 
lead to masking of targets [7]. Thus, clutter suppression techniques become the basic 
steps of target detection and parameter estimation in PBR signal processing.

So far, clutter suppression techniques, including [8–11], mainly focus on the spatial 
domain and time domain. In spatial domain, they suppress clutter by steering nulls at 
the clutter directions. In time domain, the classical approaches remove clutter basing 
on the theory of adaptive coherent subtraction. Furthermore, another time-domain 
approach is extensive cancellation algorithm (ECA) and its variants (ECA-B [12], ECA-S 
[13], ECA-C [14] ) that utilize reference signal to construct a clutter subspace matrix 
and achieve clutter suppression by eliminating the projected components of surveillance 
signal in the clutter space. All of these techniques can be used to effectively eliminate 
clutter at low Doppler frequencies, but they will also result in omitting targets with low 
Doppler frequency. Moreover, the sidelobes produced by strong targets will introduce 
false values into their adjacent Doppler cells, resulting in incorrect position and ampli-
tude estimations of weak targets [15].

In recent years, sparse representation (SR) theory has been widely studied and has pro-
vided a new idea for radar signal processing [16]. Signal processing methods based on 
SR have been proposed in the context of radar for various applications, such as ground-
penetrating radar [17], synthetic aperture radar [18], through-wall radar imaging [19] and 
inverse synthetic aperture radar [20]. The applications of combining SR with the sparsity 
of PBR scenes have also appeared in PBR signal processing. In [21], using the sparsity of 
received signals in the time domain as a constraint, the authors studied the target detec-
tion method based on the SR model of time-domain signal data and improved the iterative 
calculation steps to accelerate the computational speed. However, the long computation 
time prevents its implementation for real-time applications, especially when high sampling 
rate and long integration time are desired. In [22], a high-resolution real-time target detec-
tion sparse model of RD-domain data for PBR was built. The model was combined with the 
classical batch algorithm to split the long-received signal into multiple short batches. Then, 
based on the Doppler frequency approximation, a one-dimensional (1-D) cross-correlation 
is performed on each batch using fast Fourier Transform to generate the sparse model. In 
[23], allowing for the fact that the number of effective subcarriers (ESs) in CP-OFDM sig-
nals is far less than the total number of subcarriers, the authors proposed an ES-based SR 
method to realize target detection of PBR. Although the sparse methods in these papers 
have good target detection performance, they still face the problem of high dimensional-
ity of sparse dictionary. Therefore, how to reduce the high computation caused by the high 
dimensionality of sparse dictionary of PBR target detection based on SR still needs further 
study. In addition, if there are low-signal-to-clutter (SCR) targets in the surveillance signal 
that are much weaker than the power of the clutter, then the dictionary of the existing SR 
methods need to be set large enough to detect these targets, which will further increase the 
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computational load, and even if the dictionary is set large enough, the existing SR methods 
may not be able to accurately detect the target.

As shown in [23], when the signal of PBR is modulated by CP-OFDM, the data carried by 
the received signal in the ES domain is sparse. So, using the sparse structure of the signal 
itself is a way to speed up the calculation of algorithm. In this paper, we propose the average 
ES (AES)-domain SR model for target detection and parameter estimation based on this 
characteristic. Different from [23] which transformed the data carried by all ESs into 1-D 
data to establish the SR model, the AES-based SR model proposed in this paper is a process 
of adding and dividing the data carried by each ES of the signal. Compared with existing SR 
models, the AES-based SR model significantly reduces the dictionary dimension, bringing 
significant computational advantages. In addition, in order to further reduce the high com-
putational load and detect weak targets with lower-SCR, we innovatively propose a step-
wise estimation method based on AES (AES-S) to realize target detection in this paper. The 
method transforms the clutter elimination problem into an AES-based SR optimization 
model. Specifically, we first use the AES model to estimate the clutter coefficient, then use 
the estimated clutter parameters to eliminate the clutter from the received signal and finally 
obtain the target information by CAF between the clutter-free surveillance and reference 
channel signals. Compared with the AES-domain SR model, the AES-S algorithm can not 
only detect weak targets with lower-SCR since the integration gain for weak targets during 
the process of CAF, but also further reduce the computational complexity since only clutter 
parameters are estimated during solving the SR optimization model.

For the solving of classical SR problem, different types of algorithms have been widely 
studied and applied, including greedy algorithm [24], convex optimization algorithm [25] 
and sparse Bayesian learning algorithm [26]. The greedy pursuit algorithm has attracted 
much attention due to its simple structure and small computational complexity, and the 
orthogonal matching pursuit (OMP) algorithm [27, 28] is the mainstream approach. So, 
OMP is used to solve the proposed SR model for computational efficiency in this paper. 
Besides, in order to deal with the complex-valued radar, we extend the OMP algorithm 
to the complex domain, namely complex OMP (COMP) algorithm. Combining with the 
aforementioned AES-based SR model, we develop an AES-based COMP (AES-COMP) 
algorithm. Finally, we further quantitatively evaluate the proposed algorithms in terms of 
peak-to-sidelobe level ratio (PSLR), integrated sidelobe level ratio (ISLR), relative error 
(Err) and computational complexity.

The rest of the paper is organized as follows. Section 2 introduces the sparsity of PBR sig-
nal in time domain and subcarrier domain. In Sect. 3, the proposed AES-based SR model is 
explained in detail and the AES-COMP algorithm is introduced. In addition, to detect the 
lower-SCR target and further reduce the computational complexity, we propose AES-based 
stepwise algorithms as a remedy. Section 4 presents and assesses the simulation results. The 
experimental results are given in Sect. 5. We finally draw conclusions in Sect. 6.

2  Signal model
The SR model proposed in this paper takes advantage of the sparsity of the received 
signal of PBR in the time domain and the characteristics of signal waveform in the 
subcarrier domain. Thus, the time-domain signal model of PBR is given firstly in this 
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section. Then, combining with the CP-OFDM characteristic of opportunity illumina-
tors, the subcarrier-domain signal model is introduced.

2.1  Time‑domain signal model

As shown in Fig. 1, a typical PBR system consists of two receiving antennas. The first 
is known as the reference channel, and it receives signal by an antenna directly ori-
ented to opportunity illuminators. To obtain the purified reference signal, we can 
extract the direct-path wave as reference signal by reconstruction methods without 
any multipath distributions thanks to the digital modulation of the opportunity illu-
minators [29]. The cleaned reference signal is given by the following:

where d(t) is the complex envelope of direct-path wave signal. The second channel is 
known as the surveillance channel, which uses a directive antenna steered towards the 
surveillance area and collects low-power signals reflected from targets. The surveil-
lance signal can be regarded as the transmitted signal after time delay and Doppler shift, 
which can be modelled as:

where Nq and Nc + 1 are the number of targets and ground scatterers, respectively. aclui  

and τ clui  are the complex amplitude and time delay of the ith stationary scattering com-
ponent, respectively. btarq  , τ tarq  and fq are the complex amplitude, the delay and the Dop-
pler frequency shift of the qth target, respectively. v(t) is the white Gaussian noise in the 
surveillance channel.

By observing (2), it can be found that the echo signal can be represented as a linear 
combination of delay-Doppler-shifted replicas of the direct-path signal, which is the 
basis of SR for PBR. According to (2), the dimension of sparse dictionary in the time-
domain sparse model is related to the number of delay-Doppler grids and the number 
of total temporal samples.

(1)xref = d(t),

(2)ysurv =

Nc

i=0

aclui d t − τ clui +

Nq

q=1

btarq d t − τ tarq ej2π fqt + v(t),

Fig. 1 Diagram of a typical PBR
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2.2  Subcarrier‑domain signal model

A time-domain SR model has been established in [21]. However, such a direct SR formula-
tion will inevitably lead to large memory and computing requirements. In fact, when the 
opportunity illuminator of PBR is modulated by CP-OFDM, the subcarrier-domain SR 
models can also be established by converting the received signal to the subcarrier domain 
to reduce the dimensionality of sparse dictionary, which will be introduced specifically as 
follows. For CP-OFDM-based transmitted signal,

where l is the temporally consecutive index of CP-OFDM symbol. The full symbol dura-
tion is denoted as Te = Tg + Ts where Tg and Ts are the CP duration and the useful part 
duration, respectively. Supposing T0 is the time-domain sampling interval, the sampling 
number of a whole CP-OFDM symbol is denoted as Ne = Te/T0 = Ng + Ns where Ng 
and Ns are the sample sizes of a cyclic prefix and the number of subcarriers, respectively. 
The parameters L denotes for the number of OFDM symbols, and dl(t) denotes the lth 
symbol with

where k indicates the subcarrier index and Cl,k is the normalized value of the complex 
modulation symbol corresponding to the lth symbol of subcarrier k. The frequency 
�f = 1/Ts is the frequency spacing between adjacent subcarriers. After performing dis-
crete Fourier transforms (DFT) on the time-domain OFDM symbols, the reference sig-
nal model in the subcarrier domain can be expressed as:

where superscript “T” indicates matrix transpose, and

Similarly, under the assumption that the phase rotation caused by clutter or target Dop-
pler shift is negligible within an OFDM symbol [14], the surveillance signal of (2) in the 
subcarrier domain can be expressed as:

where each column vector Yk =
[

Y0,k , . . . ,Yl,k , . . . ,YL−1,k

]T can be expressed as:

(3)d(t) =

L−1
∑

l=0

dl(t − lTe),

(4)dl(t) =

Ns−1
∑

k=0

Cl,ke
j2πk�ft ,−Tg < t < Ts

(5)Xref = [X0, . . . , Xl , . . . , XL−1]
T,

(6)Xl = DFT[dl(n)] =
[

Cl,0, . . . , Cl,k , . . . , Cl,Ns−1

]T
.

(7)Ysurv =

















Y0,0 · · · Y0,k · · · Y0,Ns−1

...
. . .

...
. . .

...
Yl,0 · · · Yl,k · · · Yl,Ns−1
...

. . .
...

. . .
...

YL−1,0 · · · YL−1,k · · · YL−1,Ns−1

















,
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with

and ⊙ stands for the Hadamard product.
Basing on the sparsity of each subcarrier-domain data in (8), the ES-based SR model is 

established in [23], by extracting only the data carried by all ESs to generate the RD map 
and its dimension of sparse dictionary is related to the number of delay-Doppler grids 
and the number of total samples carried by all ESs.

3  Proposed approaches
In this section, we first introduce the principle of the proposed AES-based SR model. 
Then, the reconstruction algorithm AES-COMP for AES model will be presented. 
Finally, in order to improve the target detection performance of the AES model for PBR 
with lower-SCR target and further reduce the computational complexity, we propose the 
stepwise estimation methods based on AES (AES-S) to achieve target detection.

3.1  Sparse representation based on AES

According to (8), the vector Yk is composed of finite clutter and target components. There-
fore, each ES vector of the PBR signal is sparse. Based on this, if we sum and average the 
data carried by all ESs vectors, the obtained data should also be sparse. This is core of our 
proposed AES-based SR model. The AES-based SR model can reduce the dimension of 
sparse dictionary. The processing flow of AES can be summarized in the following steps. 
First, transform the surveillance signal data to ES domain by performing DFT on each time-
domain OFDM symbol. Second, obtain the data in AES domain by summing and averaging 
the data carried by all ESs vectors. The AES-based SR model is deduced in detail as follows.

Based on (8), the data carried by all ES vectors is summed and averaged to obtain:

(8)Yk =

Nc
∑

i=0

aclui e−j2π�f τ clui Qi,k +

Nq
∑

q=1

btarq e−j2π�f τ tarq Uq,k + Vk ,

(9)Qi,k =
[

C0,k , . . . ,Cl,k , . . . ,CL−1,k

]T
,

(10)
Uq,k =

[

e
j2π fq

(

Tg+τ tarq

)

, . . . , e
j2π fq

(

lTs+Tg+τ tarq

)

, . . . , e
j2π fq

(

(L−1)Ts+Tg+τ tarq

)]T
⊙Qi,k ,

(11)Vk =
[

V0,k , · · · ,Vl,k , · · · ,VL−1,k

]T
,

(12)

Ysurv_AES =





N1+Nu−1
�

k=N1



/Nu

=

Nc
�

i=0

aclui





N1+Nu−1
�

k=N1

e−j2π�f τ clui

Nu
Qi,k





+

Nq
�

q=1

btarq





N1+Nu−1
�

k=N1

e−j2π�f τ tarq

Nu
Uq,k



+

N1+Nu−1
�

k=N1

1

Nu
Vk ,
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where N1 and Nu represent the starting and total number of averaged ES, respectively. 
Obviously, Ysurv_AES is composed of three components related to clutter returns, target 
echoes and noise, respectively. Moreover, for the component of clutter returns we have:

For the component of each target echo, we have:

Then,

which shows that the received signal Ysurv_AES can be modelled as a linear combina-
tion of the target signal Starq  and Sclui  the clutter signal. Moreover, both Starq  and Sclui  are 
time- and frequency-shifted versions of Sclu0  multiplied by complex coefficients that are 
related to the size, shape and location of various scatters, where the signal Sclu0  is the data 
processed by superposition and averaging of illumination waveforms in the ES domain. 
Finally, since the number of targets and clutter in a real scene is limited in our whole sur-
veillance area, the received signal Ysurv_AES is sparse in the delay-Doppler domain and it 
can be modelled by:

In (16), if AAES is known, we can recover vector α by solving the problem:

Unfortunately, the calculation of AAES and solving (17) are impractical because AAES is 
unknown and depends on M = Nc + Nq + 1 , τ clui  , τ tarq  and fq which are all unknown 
parameters. Fortunately, we can construct sparse dictionary by discretizing search space 
in practical application. Particularly, expected time delays in (0 : T0 : τmax) and Doppler 
frequencies in 

(

−fmax : fres : fmax

)

 are discretized into I and J grids first, where the fre-
quency resolution fres = 2fmax/J  depends on the number of grid points J. Then, we can 
extend AAES to �AES by using these grid samples, and the SR model based on AES in (16) 
can be rewritten as:

(13)Sclui =

N1+Nu−1
∑

k=N1

e−j2π�f τ clui

Nu
Qi,k .

(14)Starq =

N1+Nu−1
∑

k=N1

e−j2π�f τ tarq

Nu
Uq,k .

(15)

Ysurv AES =

Nc
∑

i=0

aclui Sclui +

Nq
∑

q=1

btarq Starq +

N1+Nu−1
∑

k=N1

1

Nu
Vk

=

Nc
∑

i=0

aclui Sclui +

Nq
∑

q=1

btarq Starq + eAES,

(16)Ysurv_AES = AAESα + eAES.

(17)α = argmin
α

∥

∥Ysurv_AES − AAESα
∥

∥.
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where �AES ∈ C
L∗IJ is named as the overcomplete sparse dictionary. Considering that 

the number of echo signals in the surveillance signal is limited, the parameter estimation 
problem of PBR can be transformed to the sparse signal reconstruction problem as:

where ε and β are the regulating parameter and the vectorized range-Doppler map, 
respectively. By comparing different SR models, it is worth noting that the matrix 
dimensions of sparse dictionaries for time-domain, ES-domain and AES-domain SR 
models are LNe × JI , LNu × JI and L× JI , respectively. It is obvious that when the delay 
grids I and Doppler grids J are the same, the AES-based SR model proposed has the 
smallest number of dictionary rows, and the matrix dimensionality is also the smallest. 
Therefore, the calculation speed of the AES-based SR model proposed in this paper will 
be significantly accelerated. More comparisons of AES algorithm and other SR models 
are given in Part D of Sect. 4, including the computation complexity and the minimum 
dictionary dimension required to detect the target at different signal-to-noise ratio 
(SNR).

3.2  AES‑COMP algorithm

There are many algorithms to achieve the solution in (19). In general, OMP algorithm 
[28] is widely used because of its high computational efficiency and easy implementa-
tion. Therefore, we adopt the OMP algorithm, to the sparse matrix recovery problem in 
(19). The basic idea of the OMP algorithm is to sequentially find the support set of the 
measured signal and then project it on the atoms selected from the sparse dictionary. In 
(18), the observation vector Ysurv_AES and sparse dictionary �AES are complex-valued, so 
we extend the OMP algorithm to the complex domain, i.e. AES-COMP. Specifically, we 
rewrite (18) as:

where ℜ(.) and ℑ(.) are the real and imaginary parts, respectively, and

Since all columns of �AES are the time- and frequency-shifted versions of transmitted 
signal, all of them have the same norm, and based on (21), all columns of �̃ also have 
equal norms [21]. Thus, we can use AES-COMP to extract β̃ of (20). The steps of AES-
COMP algorithm are provided in Algorithm 1.

(18)Ysurv_AES = �AESβ + eAES,

(19)min
β

�β�1 s.t.
∥

∥Ysurv_AES −�AESβ
∥

∥

2
≤ ε,

(20)Y =

[

ℜ
(

Ysurv_AES

)

ℑ
(

Ysurv_AES

)

]

= �̃β̃ + ẽ,

(21)�̃ =

[

ℜ(�AES) − ℑ(�AES)

ℑ(�AES) ℜ(�AES)

]

, β̃ =

[

ℜ(β)
ℑ(β)

]

, ẽ =

[

ℜ(eAES)
ℑ(eAES)

]

.
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Algorithm 1 AES-COMP Algorithm

3.3  AES‑based stepwise algorithm

As described in part A of Sect. 3, since the surveillance signal in (15) consists of a few 
targets and clutter, we can describe the surveillance signal as:

where the clutter Yclu and target Ytar can be estimated using AES-COMP. However, in 
order to successfully detect the weak targets in the surveillance signal, the sparse dic-
tionary �AES needs to have a very large dimension, which will bring a lot of computation 
to the algorithm. In addition, if the SNR of targets are very low, even if the dimension of 
dictionary �AES is large enough, the target parameters estimated by AES-COMP algo-
rithm may be inaccurate. Since the power of clutter is much stronger than that of target 
echo, the clutter signal is estimated first during sparse reconstruction, followed by the 
target echo. In addition, the estimated clutter coefficients are distributed on the zero 
Doppler of RD map and can be easily distinguished from the target. Thus, we propose a 
stepwise algorithm based on AES sparse model (AES-S). Specifically, we first use the 

AES-based SR model to obtain clutter coefficients âclup =
[

âclu1 , . . . , âcluNp

]

 and time delays 

τ̂
clu
p =

[

τ̂
clu
1 , . . . , τ̂ cluNp

]

 of clutter. Then, we subtract the clutter component Ŷclu from the 

surveillance signal Ysurv according to âclup  and τ̂ clup  . Finally, we can rewrite (22) as:

where Ŷtar_AES includes the target echo and noise. However, the noise in Ŷtar_AES is not 
the main factor affecting the detection results during target detection, so we can achieve 
target detection by computing CAF between the Ŷtar_AES and the reference signal.

For the estimation of clutter, basing on the fact that the clutter is always around the 
zero-frequency grid and clutter with different time delays but at the same subcarrier 
is totally correlated, we can generate sparse dictionary �AES_S with small RD range. 
Here, we consider all delays in the interval 

(

0, τAES_S
)

 as IAES_S time grids and dis-

cretize the Doppler frequencies in the interval 
(

−fAES_S : fAES_S
)

 into JAES_S frequency 

(22)Ysurv_AES = Yclu + Ytar+eAES ,

(23)Ŷtar_AES = Ysurv − Ŷclu,
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grids. Notably, since the AES-S algorithm only needs to consider the Doppler range of 
clutter at the first step, and the clutter is around zero frequency, the Doppler grid set 
by AES-S algorithm is much smaller than that set by the AES-based SR model. There-
fore, the AES-S algorithm will further reduce the computational load when detect-
ing weak targets. For the suppression of clutter components, since we can remove 
the clutter components in the subcarrier or time domains, respectively, the AES-S 
algorithm for target information estimation can be implemented in the following two 
ways. 

1. AES-S by removing clutter in the subcarrier domain (AES-S-C)

 Based on the âclup  and τ̂ clup  of clutter already obtained, we can obtain the clutter 

Ŷclu_C =
[

Ŷclu_C,0, . . . , Ŷclu_C,l , . . . , Ŷclu_C,L−1

]T in the subcarrier domain, where 
Ŷclu_C,l can be expressed as: 

 Then, we can obtain the output signal Ŷtar_C =
[

Ŷtar_C,0, . . . , Ŷtar_C,l , . . . , Ŷtar_C,L−1

]T 

in the subcarrier domain after clutter cancellation, where Ŷtar_C,l =
[

Dl,0, . . . ,Dl,k , . . . ,Dl,Ns−1

]T

 
can be expressed as: 

 where Yl =
[

Yl,0, . . . ,Yl,k , . . . ,Yl,Ns−1

]T is the lth-row vector of (7). Finally, we per-

form CAF between the output signal Ŷclu_C and the reference signal Xref in the sub-
carrier domain to obtain target information. The CAF in subcarrier domain can be 
written as: 

 where LCAF is the required number of symbols for CAF. The parameter m is the 
delay bin representing the delay τ = mT0 and p is the Doppler bin representing the 
Doppler frequency f = p/T0Nint , where Nint = LCAFNe is the number of integrated 
samples. In addition, we can also do stepwise processing in the time domain, and the 
specific steps are as follows.

2. AES-S by removing clutter in the time domain (AES-S-T)
 Like the steps of AES-S-C algorithm, we first obtain the clutter signal ŷclu_T in time 

domain through âclup  and τ̂ clup ,

(24)

Ŷclu_C,l =





Np
�

p=1

âclup Cl,0, . . . ,

Np
�

p=1

âclup ej2πk�f τ clup Cl,k , . . . ,

Np
�

p=1

âclup ej2π(Ns−1)�f τ clup Cl,Ns−1





T

.

(25)Ŷtar_C,l = Yl − Ŷclu_C,l ,

(26)χ [m, p] =

LCAF
∑

l

e−j2πpl/LCAF

Ns−1
∑

k=0

Dl,kC
∗
l,ke

j2πpkm/Ns ,
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Then, the output signal ŷtar_T can be written as:

Finally, we perform CAF in time domain to estimate targets. The CAF can be expressed 
as:

where xref[n] and ŷtar_T[n] are the sampled reference signal in (1) and output signal in 
(28), respectively. By the way, the AES-S-T method can be used for other types of oppor-
tunity illuminators, not limited to OFDM signals.

4  Simulation analysis
In this section, we first present the target detection results of the proposed algorithms in 
simulated scenarios and compare them with the traditional clutter suppression method. 
Then, we use four metrics to mathematically analyse the detection performance of the 
proposed algorithms.

4.1  Simulation setting

Here, we evaluate the performance of the proposed algorithms based on PBR using 
DRM-based OFDM signal. To evaluate the detection ability of the proposed algorithm 
more intuitively in real situations, we consider a multitarget simulation scenario con-
taining several targets with different SNRs in this section. In the simulation, the transmit 
signal is generated according to the standard of DRM signal in mode B and is used as a 
reference channel signal, which is clean and free of noise. The bandwidth of the OFDM 
signal is 9.7  kHz, the number of ESs is 207, �f = 46.875Hz , Ns = 256 and Ng = 64 . 
The time-domain sample interval T0 is 1/12000  s. In total, 2500 OFDM symbols are 
used to generate the dictionaries �AES and �AES_S , respectively. The Doppler shift range 
of sparse dictionary �AES is set to −  18.6∼18.6  Hz, where the Doppler resolution is 
0.15 Hz. And the maximum delay of the target does not exceed the number of CPs of the 
OFDM symbol, so the delay range of sparse dictionary �AES is set to 0:1:40 (samples). 
Since only zero-frequency clutter is considered, the Doppler grid of �AES_S is only set 
at 0 Hz, and the delay range is consistent with that of �AES . The RD-domain data will be 
obtained after CAF processing where the coherent processing interval is about 13.6 s.

In the surveillance channel, 13 stationary scatterers are used to simulate clutter. The 
clutter-to-noise ratios (CNRs) of the simulated zero-Doppler clutter are (70:-5:10) dB. 
Besides, the corresponding bistatic delay bins are (0:1:12) samples. In addition, the sur-
veillance channel contains 5 targets, and the values of their bistatic delay bin, Doppler 

(27)ŷclu_T(t) =

Np
∑

p=1

âclup d
(

t − τ̂ clup

)

.

(28)

ŷtar_T(t) =ysurv(t)− ŷclu_T(t)

=ysurv(t)−

Np
∑

p=1

âclup d
(

t − τ̂ clup

)

.

(29)χ [m, p] =

Nint
∑

n=0

ŷtar_T[n]x
∗
ref[n−m]e−j2πpn/Nint ,
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shift and SNR parameters are listed in Table1. Furthermore, we assume that both the 
target and the clutter are point scattered, and the thermal noise is modelled as complex 
white Gaussian noise.

4.2  Simulation results

We first assess the effect of clutter on target detection. Figure 2 shows the RD map of 
received signal in simulation scenario of Table 1 without using any clutter cancellation 
method. As shown in Fig. 2, the simulated targets are completely masked by clutter, and 
only clutter with very strong CNR can be seen. This phenomenon indicates the neces-
sity of clutter suppression in PBR. Therefore, the target detection of PBR needs various 
interference cancellation algorithms as remedial measures. Because the authors of [12] 
have demonstrated that the ECA-B algorithm has good target detection performance, 
we use the ECA-B algorithm as a benchmark to compare with the algorithm proposed in 
this paper.

Now, we evaluate the target detection and interference cancellation performance of 
our proposed algorithm in a multitarget scenario as shown in 1. At the same time, we 
also compare the performance of our proposed algorithm with the ECA-B algorithm 
in target detection and interference cancellation. Figure 3a shows the RD map after 
clutter suppression using ECA-B. Obviously, the targets T1 and T4 , which have low 
Doppler frequencies, are eliminated during the clutter suppression process. Moreo-
ver, the strong target T2 creates side lobes around the target T3 , resulting in some SNR 

Table 1 Target parameters of the simulation

Target T1 T2 T3 T4 T5

Delay (samples) 3 8 8 15 12

Doppler (Hz) − 0.3 9 8.4 0.45 6

SNR (dB) − 6 10 0 − 22 − 10

Fig. 2 RD map before clutter suppression
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loss at T3 . Furthermore, the algorithm generates some false targets when detecting 
multitarget scenarios, which will affect the subsequent operation of PBR. Figure  3b 
shows the RD map obtained using the AES model. We have noticed that there are 5 
peaks in the RD map, and the results are consistent with the given target parameters, 
which proves the correctness of the algorithm. The algorithm can detect all echoes, 
including targets and clutter, in a uniform manner without prior knowledge of the 
clutter location or statistics. Furthermore, the target T1 , which cannot be detected 
using the ECA-B, is detected, and located by AES. Figure  3c,d shows the RD maps 
using the AES-S-T and the AES-S-C algorithms, respectively. It can be seen that both 
algorithms can successfully detect the targets, which are given in Table 1. The reason 
that the target T1 and T4 can be detected using these two algorithms is as follows. In 
the process of eliminating clutter, we only eliminate the zero-frequency clutter but do 
not eliminate the signals near the zero frequency at the same time.

Next, we demonstrate the unique high range resolution capability of the AES algo-
rithm. To illustrate the high range resolution capability of AES, we add a new target 
T6 near T5 with the same Doppler shift. Moreover, T6 and T5 are only 1 time delay away 
from each other. Figure 4a, b shows the RD maps of the detected targets using ECA-B 
and AES, respectively. We observe that T6 and T5 are correctly resolved and located 
using the AES method. However, only the peak of the strong target T6 is visible on 

Fig. 3 Simulated results obtained by different methods in the simulated multitarget scenario of Table 1. a 
RD map obtained by ECA-B algorithm. b RD map obtained by AES algorithm. c RD map obtained by AES-S-C 
algorithm. d RD map obtained by AES-S-T algorithm
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the RD map by using ECA-B algorithm, and the weak target T5 is masked by T6 . It is 
worth noting that we do not show the clutter in Fig. 4b in order to highlight the tar-
get. For a more visual comparison, Fig. 4c shows two profiles of the ECA-B and AES 
along the range dimension at Doppler 6 Hz. It can be seen that the target estimated 
by the ECA-B method suffers from a severe main lobe split, which affects the detec-
tion of adjacent target.

Finally, we investigate the target detection and interference cancellation performance 
of AES-S-T and AES-S-C in the low-SCR case and compare them with the AES algo-
rithm. Here, we consider a simulated scenario in a single-target scenario with SNR of 
− 30 dB, namely low SCR of − 100 dB. Moreover, clutter parameters here are consistent 
with the clutter parameters in Table 1. The simulation results are shown in Fig. 5. From 
the simulation results, we can see that another peak that cannot be matched with the 
target position appears when using the AES sparse model to detect target, and this peak 
is not very different from the target peak, which may lead us to misidentify the peak as 
target, i.e. a false target. However, the AES-S-T and AES-S-C methods can effectively 
detect weak targets with very low SCR. In addition, due to the inevitable estimation 
error of the AES-COMP algorithm, it leads to some residual clutter in the AES-S algo-
rithm at 0Hz. Fortunately, the tolerable error does not affect target detection.

4.3  Performance assessment

In this subsection, we mathematically analyse the detection ability of the proposed 
algorithm in the presence of interference. There are various metrics that can be used to 

Fig. 4 Simulation detection results of RD maps comparing the high range resolution capability of different 
algorithms. a RD map obtained by ECA-B algorithm. b RD map obtained by AES algorithm. c Range profile at 
Doppler 6Hz

Fig. 5 Simulation detection results of the single target with low SCR by different algorithms. a RD map 
obtained by AES algorithm. b RD map obtained by AES-S-C algorithm. c RD map obtained by AES-S-T 
algorithm



Page 15 of 21Zhao et al. EURASIP Journal on Advances in Signal Processing          (2024) 2024:9  

measure target detection performance. In this paper, we use the following three met-
rics. The first metric is PSLR, which can represent the ability of the PBR to detect weak 
targets [30]. It gives the ratio between the highest sidelobes and the peak. If detecting 
targets in the presence of strong clutter, PSLR is critical and must be kept low to prevent 
mistaking one side lobe as another small target. Therefore, the lower the PSLR, the bet-
ter the detection performance of the algorithm. PSLR in dB scale is defined as:

where m0 and p0 are the range bin and Doppler bin of target, respectively. The param-
eters D and F, respectively, define the set of range bins and Doppler bins except for main 
lobe in the RD map. The second metric is ISLR, which is a measure of the energy distrib-
uted in the side lobes [30]. It gives the ratio between the cumulative and peak values of 
the side lobe. It is important to use a low ISLR to keep weak targets visible. So, the lower 
the ISLR of the algorithm, the better the performance. The ISLR in dB scale is defined as:

The third indicator is Err [31], which is a measure of the accuracy of parameter estima-
tion and can be defined as:

where β0 and β are the real and estimated sparse coefficients in the RD map, respectively. 
The smaller the ERR value, the higher the estimation accuracy of the target parameters 
after processing by the algorithm.

To quantitatively evaluate different algorithms by the above metrics, we change the 
target SNR from −20 to 10 dB with step size 3 dB, and the clutter environment is set up 
the same way for the multitarget scene. After the clutter suppression and CAF calcula-
tion, the PSLR, ISLR and Err of target are obtained from the RD maps, which represents 
the clutter suppression performance. In total, 100 Monte Carlo (MC) simulations are 
performed for each algorithm at each SNR. We insert one single target to calculate PSLR 
and ISLR, while arbitrarily selecting three targets to obtain results of Err.

We know that in order to prevent weak targets from being covered by side lobes of 
strong targets, the lower the PSLR and ISLR, the better the performance. We depict the 
relationship between the three metrics and the target SNR using different algorithms 
in Fig.  6. We observe that our proposed three algorithms outperform the traditional 
algorithm ECA-B in terms of PSLR and ISLR, and the AES algorithm has the best per-
formance in all aspects. Moreover, the ISLR of AES-S-T is slightly lower than that of 
AES-S-C. This is caused by the fact that the noise floor of AES-S-C is higher than that 
of AES-S-T. Therefore, the AES-S-T algorithm performs slightly better than the AES-
S-C algorithm. When we analyse the Errs of four algorithms in the case of multiple tar-
gets, it is found that the AES algorithm has the smallest Err values, which is almost close 
to zero. And we also find that the Err values of AES-S-T and AES-S-C are almost the 
same. The reason for this phenomenon is that the Err of AES-S-T and AES-S-C depends 

(30)PSLR = 20log

(

max
m∈D,p∈F

(|β[m, p]|)/|β[m0, p0]|

)

,

(31)ISLR = 20log

∑

m∈D,f ∈F |β[m, p]|2

∑

m/∈D,f /∈F |β[m, p]|2
.

(32)Err = �β − β0�2/�β0�2,
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on the first step of the stepwise algorithm for clutter suppression operation, and both 
AES-S-T and AES-S-C clutter suppression operations are implemented using AES. So, 
they have the same degree of clutter suppression and the same reconfiguration accu-
racy of the target. This result is consistent with the conclusion in [23]. We further find 
that PSLR and ISLR are inversely proportional to the target SNR. When the target SNR 
increases gradually, PSLR and ISLR gradually decrease accordingly. Overall, the analysis 
results are consistent with the definitions of PSLR and ISLR, which further illustrates the 
correctness of the proposed algorithms.

4.4  Computational complexity

In this section, we investigate the computational complexity of the proposed algorithm. 
We first compare the complexity of the three algorithms proposed in this paper, where 
the computational complexity of the algorithms is measured by the number of complex 
multiplications. The computational complexities of the AES-S-T and AES-S-C algo-
rithms come from the following two processing stages: clutter suppression and CAF cal-
culation, where the computational complexity of CAF calculations in the time domain 
and subcarrier domain is

Table 2 summarizes the computational complexity of the proposed three algorithms.
Here, a specific comparison for computational complexity is given via the simu-

lation parameters listed in Table  1. When introducing the AES-S-T and AES-S-C 
algorithms, we assume that the number of iterations WAES_S = 20 , and the required 
number of symbols for CAF is LCAF = 512 . The overall computational complexities 
of the AES-S-T and AES-S-C are about 1.115× 107 and 1.049× 107 , respectively. For 

(33)CT_CAF =NeLCAF
(

1.5log2Ne + 0.5log2LCAF + 1
)

,

(34)CC_CAF =NsLCAF
(

1.5log2Ns + 0.5log2LCAF + 1
)

,

Fig. 6 Performance comparisons of AES, ECA-B, AES-S-C and AES-S-T. a PSLR. b LSLR. c Err

Table 2 Computational complexity in terms of complex multiplications

Algorithm Clutter suppression Overcomplexity

AES-S-T CT_SR = O
(

4LJAES_S IAES_SWAES_S

)

CT_SR + CT_CAF

AES-S-C CC_SR = O
(

4LJAES_S IAES_SWAES_S

)

CC_SR + CC_CAF

AES 0 O(4LJIW)
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comparison, the computational complexity of AES is about 2.042× 109 . From the 
above results, we can see that the computational complexity of the AES-S algorithm is 
significantly lower than that of the AES-based SR model. Therefore, the AES-S algo-
rithm proposed in this paper can not only achieve the detection of weak targets, but 
also further reduce the computational complexity.

In addition, we compare the computational complexity of the AES-based SR 
model proposed in this paper with existing SR models, such as the time-domain 
SR model proposed in [21] and the ES-based SR model proposed in [23]. Table  2 
shows that the main factor affecting the computational complexity is the diction-
ary’s matrix dimension, when using the same sparse reconstruction algorithm. Also, 
as described in Section III-A, it is easy to understand that when the grid parameters 
(namely J and I) are defined, the sparse reconstruction algorithms’ target detection 
ability will increase as the dictionary dimension gets larger (namely L gets larger). 
Therefore, we analyse the minimum number of L required by the three SR models 
to detect the target at different SNR in Fig. 7, where the parameters J and I for three 
SR models are consistent with the simulation part. As can be seen from the result in 
Fig.  7, the dimension of the AES algorithm is much smaller than that of the SR 
model in [21, 23], which means that the calculation speed can be correspondingly 
accelerated. Specifically, the calculation of the proposed AES-based model amount 
can be reduced by about 50% compared with the time-domain SR model in [21]. 
Compared with the ES-based SR model in [23], the computation of our proposed 
SR model can be reduced by about 46.97%. Therefore, the AES-domain SR model 
proposed in this paper can effectively reduce the computational compared with the 
existing SR models.

Fig. 7 Smallest dimension of the dictionary for different SR models while the number of delay-Doppler grids 
is determined
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5  Experimental results
To further demonstrate the effectiveness of the proposed method in this paper, we use the 
measurement data for validation. The measured data is obtained from the detection experi-
ment of DRM-based passive radar [32]. The effective bandwidth of the DRM broadcast sig-
nal received by this radar system is 9.7 kHz, and the operating frequency is 10 MHz. The 
transmitting station is in Qingdao, and the receiving station is located on the coast of Hai-
yang City, Hainan Province, China, with about 50 km between the receiving and transmit-
ting stations. The receiving antenna is a linear array with 16 elements, and the transmitted 
signal mainly reaches the receiving array via the ground wave propagation mode. As the 
reference channel and the surveillance channel shares the same array, the receiving array 
beam is pointed to the direction of the transmitter and the target at the receiving side to 
obtain the reference signal and the surveillance channel signal, respectively.

Because the SCR of target is extremely low in the real situation, it may not be able to 
detect the target accurately by directly using the AES-based SR model with restricted 
dimension of sparse dictionary, and false targets will appear as shown in Fig. 5a. Therefore, 
we will directly use the AES-S-C and AES-S-T algorithms to detect target for the meas-
ured data. We set the Doppler shift range of distributed clutter dictionary from − 2 to 2 
Hz, with adjacent intervals of 0.5 Hz. The delay bin for target is considered in the range of 
0:1:64(samples). Since the truth location of target cannot be obtained in the real experiment 
as in the simulation experiment, we use the results after the ECA-B algorithm clutter sup-
pression as a reference to validate the experiment.

The results of two measured data are shown in Figs. 8 and 9. Figures 8a and 9a show 
the RD maps of the measured data without clutter suppression. In these figures, the 
target cannot be identified at all and only strong clutter at zero frequency can be 
observed. Figures 8b and 9b present show the RD maps of measured data after clutter 
suppression by the ECA-B algorithm. As can be seen from the figures, the detected tar-
get Doppler frequencies of two sets of measured data are about − 3.6 Hz and 4.98 Hz, 
respectively. However, there is still a lot of residual clutter in the RD maps that have 
not been suppressed (mainly sea clutter). Figure 8c, d shows the target RD maps after 
using the AES-S-T and AES-S-C algorithms for the measured data I, respectively. We 
observe that the AES-S-T and AES-S-C algorithms are effective in detecting the targets 
in the measurement data. Similarly, the targets of measurement data II are also effec-
tively detected in Fig. 9c, d.

For a more intuitive comparison, Figs. 8e and 9e show the normalized target range bin 
cuts of the two measurement sets after clutter suppression by the three algorithms. For 
the sake of better observation, we have selected only part of the normalized target range 
bin cuts. We find that the detection performance of the AES-S algorithm is better than 
the ECA-B algorithm. To make the results clearer, SNR values of the same target after 
different algorithms in Figs. 8e and 9e are shown in Table 3, which shows that the detec-
tion performance of the AES-S algorithm is better than the ECA-B algorithm.
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Table 3 The target SNR using different algorithms

Algorithm Experimental data I (dB) Experimental 
data II (dB)

AES-S-T 24.48 17.91

AES-S-C 20.93 14.36

ECA-B 19.14 12.77

Fig. 8 Results of experimental data I. a RD map before clutter suppression. b RD map after clutter 
suppression by ECA-B algorithm. c Result of target extraction using AES-S-T method. d Result of target 
extraction using AES-S-C method. e Normalized target range bin cuts

Fig. 9 Results of experimental data II. a RD map before clutter suppression. b RD map after clutter 
suppression by ECA-B algorithm. c Result of target extraction using AES-S-T method. d Result of target 
extraction using AES-S-C method. e Normalized target range bin cuts



Page 20 of 21Zhao et al. EURASIP Journal on Advances in Signal Processing          (2024) 2024:9 

6  Conclusion
In this paper, to solve the high-dimensional problem of PBR target detection based on 
SR model, we first established an efficient and complexity-reduced SR model based on 
AES by using the sparsity of CP-OFDM-based PBR signal in each effective subcarrier 
channel. Then, we further proposed the AES-S-C and AES-S-T algorithms to solve the 
problem that the existing SR models still faces the problems of high computation and 
inaccurate target parameter estimation when detecting weak targets. By transforming 
the time delay estimation problem of clutter to the problem of the sparse signal rep-
resentation, the proposed algorithms obtain the output signal after clutter cancella-
tion with the clutter parameters estimated. We provide extensive simulation results to 
demonstrate the efficiency of the proposed algorithm in target detection. The metrics of 
PSLR, ISLR and Err are used to quantitatively measure the performance of algorithms. 
Results show that the proposed algorithms have lower PSLR, ISLR and Err. In addition, 
experiments with real PBR data in complex clutter environment demonstrate the effec-
tiveness of the proposed algorithms. In future work, we will further verify the moving 
target detection performance of the algorithm in different clutter environments. In the 
future work, we will further study the improvement of sparse reconstruction algorithm, 
such as using the iterative shrinkage-thresholding-based algorithms, alternating direc-
tion method of multiplier-based algorithms and off-grid sparse reconstruction methods.
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