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Abstract 

Two-stage precoding schemes have been developed to reduce the channel estima-
tion overhead in FDD systems. By integrating user scheduling into these schemes, it 
becomes possible to meet the quality-of-service requirements of high-density wire-
less communication systems, despite the limitations on spatial resources and transmit 
power budget. In this paper, we propose a user scheduling and dynamic beam alloca-
tion method for neighbor-based joint spatial division multiplexing (N-JSDM) transmis-
sion. The user scheduling problem is formulated as a 0–1 quadratic programming 
problem to maximize effective spectral efficiency (ESE) using directional channel prop-
erties. To address the complexity issue, convex relaxation and linearization methods 
are employed to transform the problem into a 0–1 mixed integer linear programming, 
and a dimensionality reduction method is introduced. The proposed user scheduling-
aided N-JSDM scheme reduces downlink training length and feedback of channel state 
information. Additionally, a dynamic configuration form is used for pre-beamforming 
matrix design based on user distribution, outperforming conventional approaches. 
Simulation results demonstrate higher ESE achieved by the proposed scheme com-
pared to previous methods.

Keywords: N-JSDM, User scheduling, Dynamic beam allocation, Mixed integer 
programming, Linearization

1 Introduction
Over the past three decades, the data rates of wireless communication have been dou-
bling every eighteen months, and it is projected to reach Terabit-per-second in the near 
future [1]. Massive multiple-input multiple-output (MIMO) has been a crucial tech-
nology for enhancing system throughput and providing reliable communication [2]. By 
employing a large-scale antenna array at the base station (BS), massive MIMO achieves 
higher data transmission rates, with the number of BS antennas significantly surpass-
ing the number of served user terminals. It utilizes spatial resources and capitalizes on 
the multipath propagation characteristics to establish a parallel transmission mecha-
nism, multiplying system capacity without the need for additional spectrum resources 
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or transmit power [3]. In the forthcoming communication systems, massive MIMO will 
continue to play a pivotal role.

Massive MIMO relies on the channel state information (CSI), which is the commu-
nication link state information from the transmitter to the receiver [4]. When the CSI 
is perfect, the performance of massive MIMO scales linearly with the smaller num-
ber of antennas between the transmit and receive sides [5], underscoring the critical 
importance of obtaining instantaneous CSI. In previous research on massive MIMO 
systems, time division duplex (TDD) mode has been widely adopted. TDD leverages 
channel reciprocity, enabling the estimation of downlink CSI through the uplink chan-
nel, thereby reducing spectral overhead [6–9]. However, the prevailing wireless stand-
ards predominantly employ frequency division duplex (FDD) systems, which offer more 
mature industrial products and market share [10]. Furthermore, in the extensively stud-
ied millimeter-wave frequency band, FDD systems may exhibit similarly impressive 
performance in cell-free massive MIMO systems [11]. Nonetheless, due to the absence 
of channel reciprocity, FDD massive MIMO systems necessitate substantial downlink 
training length (DTL) and CSI feedback during the downlink communication to acquire 
CSI at the transmitter [12]. Additionally, the cost of reconfiguring frequency bands to 
accommodate TDD in FDD systems is considerably high [13]. Consequently, for FDD 
massive MIMO systems, acquiring CSI presents a significant challenge, particularly 
for telecom operators compelled to upgrade their existing FDD systems to 5 G wireless 
communications.

There have been a lot of research efforts on reducing DTL and channel feedback in 
FDD massive MIMO systems. Similar to the CSI acquisition in TDD mode, several stud-
ies (e.g., [11] and [13]) leverage angle reciprocity by transmitting uplink pilots to obtain 
CSI, thereby eliminating the need for CSI feedback. The minimum number of pilots 
required corresponds to the number of terminals. Moreover, some works focus on the 
spatially correlated MIMO channels and utilize the structure of CSI to reduce DTL and 
CSI feedback. Specifically, the compressed sensing techniques are used to exploit chan-
nel sparsity [14, 15]. Expanding on the consideration of spatial correlation, additional 
researches have taken into account temporal correlation and leveraged the spatial and 
temporal common sparsity of massive MIMO channels to acquire CSI with reduced 
overhead [4, 16]. Additionally, a two-stage beamforming scheme called joint spatial divi-
sion multiplexing (JSDM) based on statistical CSI is proposed [12]. The JSDM beam-
forming scheme comprises two stages. In the first stage, the pre-beamformer uses the 
channel covariance matrix (CCM) to mitigate inter-group interference. In the second 
stage, the instantaneous CSI of each group is used to design a precoding scheme for 
intra-group interference suppression. Obtaining the statistical CSI is relatively easier 
compared to instantaneous CSI since its variations occur at a slower rate [17, 18].

Extensive research attentions have been paid to enhance the performance of JSDM 
[19–23]. Some works consider the pre-beamformer design to achieve a better spectral 
efficiency [19–21]. Specifically, due to the non-convexity caused by signal-to-inter-
ference-plus-noise ratio (SINR) as an optimization criterion, Kim et al. proposed to 
use signal-to-leakage-plus-noise ratio (SLNR) as the optimization objective and sim-
plified the SLNR-based pre-beamformer design problem to the trace quotient prob-
lem encountered in the field of machine learning [19]. In [20], Jeon et  al. used the 
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minimum mean squared error criterion to design the pre-beamformer and multi-user 
precoder sequentially. However, none of the above works considered the impact of 
user grouping. Since the channel covariance matrices of users differ, and the goal of 
user grouping is to make users in each group have a common eigen-subspace, there 
will inevitably be overlapping signal spaces between groups. Eliminating inter-group 
interference by pre-beamforming will reduce the signal space and result in a loss of 
system performance. Recently, a scheme called neighbor-based JSDM (N-JSDM) is 
proposed in [21], which avoids the user grouping problem by adopting the neighbor 
scheme to fully utilize the signal space. N-JSDM is still a two-stage scheme. In the 
first stage, a pre-beamforming matrix is designed according to the CCMs to reduce 
the interference of non-neighbors, and the effective channel matrix becomes a band 
matrix. Neighbor interference is removed in the second stage. Besides, Khalilsarai 
et al. proposed a method to approximate the downlink CCM of users as the columns 
of the discrete Fourier transformation matrix, particularly when the number of anten-
nas at the BS is large [22]. This approximation enables the BS to utilize codebook-
based beam selection for designing the pre-beamforming matrix, thereby reducing 
the computational complexity. There are also works to improve the performance of 
JSDM from the aspects of antenna structures [23] and BS selection [24]. Tang et al. 
provided an analysis of two-stage precoding designs under different antenna struc-
tures, offering guidelines for antenna structure selection to achieve a better balance 
between performance and cost [23]. Considering that the overlap of the angle-spread-
ing-ranges (ASR) of different user clusters may seriously degrade the performance of 
two-stage precoding, Ma et al. proposed a solution to minimize ASR using BS selec-
tion [24].

As the number of users increases in the system, inter-user interference becomes 
severe, and a portion of degrees of freedom is used to mitigate inter-group interfer-
ence, resulting in a degradation of desired signal energy [21]. Therefore, it is necessary 
to schedule users to improve the spectral efficiency. User scheduling in conventional 
JSDM schemes are divided into two parts: user grouping and intra-group user sched-
uling. Before implementing JSDM beamforming, users need to be grouped, and the 
users in each group share a common eigen-subspace, i.e., group eigen-space, where the 
group eigen-spaces of different groups are orthogonal or non-overlapping. Several user 
grouping methods have been proposed [25–28]. For example, the K-means clustering 
algorithm based on chordal distance and fixed quantization algorithm based on discrete 
Fourier transform are proposed in [25]. Xu et al. presented a K-means algorithm based 
on weighted likelihood metric in [26]. Nam et al. transformed user grouping into a sub-
space packing problem in Grassmann manifold [27], while a recent work [28] proposes 
a hierarchical clustering algorithm that considers both the number of groups and the 
chordal distance threshold. Besides, intra-group user scheduling has also been stud-
ied. A scheduling algorithm based on average SLNR has been proposed [28]. The itera-
tive SLNR-based group scheduling combines the outer precoder and group scheduling 
to achieve better performance. Xu et  al. proposed an optimized scheduling algorithm 
based on channel quality indicator (CQI). The algorithm assumes that the users cannot 
achieve the maximum value on two or more beams and assigns a specific beam to each 
user based on CQI, allowing the user to obtain maximum gain on that beam [26].
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Considering the advantages of N-JSDM, incorporating user scheduling into the 
N-JSDM transmission scheme enables better integration of precoding techniques, fur-
ther optimizing system performance and enhancing communication quality. In this 
paper, we propose a user scheduling and dynamic beam allocation method for the 
N-JSDM transmission scheme to maximize effective spectral efficiency (ESE) subject to 
limited pilot length. Specifically, considering the challenges in acquiring complete CSI, 
we formulate the user scheduling problem as a 0–1 quadratic programming by lever-
aging the channel directional features. Since the users are randomly distributed, we 
propose dynamically allocating the number of beams serving each user. This idea is 
incorporated into the optimization problem as a constraint, and the pre-beamformer is 
designed accordingly. Additionally, we transform the optimization problem into a 0–1 
mixed integer programming problem using convex relaxation and linearization tech-
niques. Simulation results demonstrate the validity of the theoretical analysis. The pri-
mary contributions of this paper can be summarized as follows:

• We analyze the factors that impact ESE and formulate the user scheduling problem 
as a 0–1 quadratic programming problem with linear constraints, leveraging the 
channel directional features. These features are more stable over larger time scales 
compared to instantaneous CSI, which varies according to the channel coherence 
time.

• To simplify the 0–1 quadratic programming problem, we employ convex relaxation 
and linearization techniques to transform it into a mixed integer linear programming 
problem. Additionally, to further reduce computational complexity, we propose a 
dimensionality reduction method.

• The pre-beamformer design using dynamic allocation scheme is proposed. Since the 
number of beams serving each user is determined by the interference between the 
user and its neighbors, it can be well applied in realistic scenarios where users are 
randomly distributed and/or DTL is limited.

The rest of the paper is organized as follows. Section 2 describes the system model and 
the N-JSDM scheme. The problem formulation of N-JSDM user scheduling is pro-
vided in Sect.  3. The beam allocation method based on overlap density, the lineariza-
tion method of 0–1 quadratic programming, and the dimensionality reduction method 
are presented in Sect. 4. In Sect. 5, we propose a pre-beamformer design with dynamic 
beam configuration. Simulation results and discussion are given in Sect. 6. Finally, we 
conclude this paper in Sect. 7.

1  Notation

Bold uppercase letters indicate matrices, and bold lowercase letters represent column 
vectors. The i-th row and i-th column of matrix A are denoted by ai and ai , respectively. 
The factorial of a is represented by a! . IN represents the N × N  identity matrix, while 
the superscripts (·)H and (·)T denote the conjugate transpose and transpose of a matrix, 
respectively. The pseudo-inverse operation is denoted by (·)† . The orthogonal complement 
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space is represented by span⊥(·) . The Hadamard product is denoted by ⊙ . The set of real 
numbers and complex numbers is N and C , respectively. ι represents the imaginary unit, 
i.e., ι =

√
−1.

2  Preliminary
2.1  System model

We consider a typical single-cell FDD massive MIMO system where a BS is equipped 
with a uniform linear array (ULA) of M elements serving K  single-antenna users. The BS 
applies a precoder V ∈ CM×K  in the downlink to transmit symbols. Then, the received 
signal at the users can be written as

where y = [y1, y2, . . . , yK ]T ∈ CK×1 with yk being the received signal of user k , 
HH = [h1,h2, . . . ,hK ]H ∈ CK×M is the channel matrix with hHk ∈ C1×M being the chan-
nel from BS to user k , s = [s1, s2, . . . , sK ]T ∈ CK×1 is the transmitted signal satisfying 
a power constraint E(ssH ) = IK  , and n = [n1, n2, . . . , nK ] ∈ CK×1 denotes the additive 
white Gaussian noise vector with n ∼ CN (0, IK ).

In this paper, we adopt a one-ring (OR) channel model [29], in which user k has an 
azimuth angle θ and an angular spread (AS) � , and θk is randomly distributed1. Here, we 
sort the users as θ1 ≤ θ2 ≤ · · · ≤ θK  . The (m, p)-th element of the CCM Ck of user k is 
[29]

where �C is the carrier wavelength, D = �C/2 is the spacing between two antenna ele-
ments. According to Karhunen–Loeve representation, we can write the channel vector 
of user k as hk = C1/2

k zk , where zk is small-scale fading with zk ∼ CN (0, IM) . Letting 
C = K

k=1 Ck , span(H) can be any subspace of span(C).
Since statistical CSI varies much slower than the instantaneous CSI, the BS can accu-

rately obtain the statistical CSI through long-term feedback [32, 33].

2.2  The description of N‑JSDM scheme

The N-JSDM uses neighbor scheme instead of grouping scheme to fully utilize the signal 
space and thus provide a better performance. The following is a brief introduction about 
N-JSDM.

For user k , if | θk − θj |> ω , then user j is called user k ’s non-neighbor, and the index 
set of user k ’s non-neighbors is �̄k = {j| | θk − θj |> ω} , where ω is called neighbor angu-
lar spread (NAS) (in [21], ω is chosen to be 2� ); the index set of user k and its neighbors 
is �k = {j| | θk − θj |≤ ω} . Since θ1 ≤ θ2 ≤ · · · ≤ θK  , the elements in �k are consecutive 
numbers, and �k can be represented as �k = {kl , . . . , k , . . . , ku} . In the following, we 
refer to the set �k as the neighbor domain of user k.

(1)y = HHVs+ n,

(2)[Ck ]m,p = 1

2�

∫ θk+�

θk−�

e
−ι2πD(m−p) sin θ

�C dθ ,

1 We assume that the information about the CCM is known and accurate. This assumption is reasonable because there 
have been research studies on CCM estimation, as detailed in [30, 31]. These works leverage the angular reciprocity 
between the uplink and downlink channels in FDD systems to improve channel estimation.
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N-JSDM is a two-stage beamforming scheme. In the first stage, user k ’s CCM 
Ck(k = 1, 2, . . . ,K ) is used to design the pre-beamforming matrix Bk to reduce non-
neighbor interference, so that for each k

The effective channel matrix after the pre-beamforming stage is HHB where 
B = [B1,B2, . . . ,BK ] . From Eq. (3), the k-th row of HHB can be written as

where B�k
= [Bkl , . . . ,Bk , . . . ,Bku ] is defined as the matrix composed of the pre-beam-

forming matrix of user k and its neighbors. Equation (4) indicates that hHk B has a contin-
uous sequence of col(B�k

) nonzero values, where col(·) refers to the number of columns. 
It should be noted that since the azimuth angle of users is sorted, when θk > θj , there 
must be kl ≥ jl and ku ≥ ju , so the effective channel matrix HHB is a band matrix.

In the second stage of N-JSDM, to eliminate the interference from neighbors, 
W = (H̃)†Ŵ is designed using the zero forcing criterion [34]. Here, H̃ represents the esti-
mation of the effective channel matrix HHB , and Ŵ = diag(γ1, γ2, . . . , γK ) is used to nor-
malize each column of H̃ . As a result, the SINR at user k is given by [21]

where wk is the k-th column of W and σ 2 is the noise power. It should be noted that the 
precoding matrix of N-JSDM is written as V = BW.

In more practical scenarios, users are randomly distributed. The conventional JSDMs 
divide users into G groups, and when the users are distributed randomly, there always 
exists common space between the signal spaces of adjacent groups. The signal space of 
the g-th group is denoted by span(Hg ) . To mitigate the inter-group interference, span(Bg ) 
is orthogonal to all the signal space span(Hj), j  = g . This means that span(Bg ) is orthog-
onal to all the overlapped signal space, and hence ∪g=1,2,··· ,Gspan(Bg ) (i.e., span(B)) is 
orthogonal to all the overlapped signal space. Consequently, span(H) � span(B) , result-
ing in a lower-dimensional utilized signal space span(BHH) compared to the full signal 
space span(H) , thereby decreasing the performance of JSDM. Compared to conventional 
JSDMs, N-JSDM offers the following advantages: Firstly, it achieves higher spectral effi-
ciency. N-JSDM employs a neighbor grouping approach to further divide users into 
subgroups, eliminating the requirement for users in the same neighbor domain to share 
the same common subspace. This allows for the use of more refined precoding tech-
niques to reduce interference, thereby improving the system’s spectral efficiency. Sec-
ondly, N-JSDM exhibits better interference mitigation capabilities. When designing the 
pre-beamforming scheme, N-JSDM takes into account the mutual interference between 
subgroups. By optimizing the pre-beamforming matrix, interference between subgroups 
can be more effectively reduced, enhancing the system’s interference mitigation perfor-
mance. Therefore, N-JSDM is considered a more promising and feasible beamforming 
scheme.

(3)hHk Bi = 0, i ∈ �̄k .

(4)
hHk B = (hHk B1,h

H
k B2, . . . ,h

H
k BK )

= (· · · , 0, 0,hHk B�k
, 0, 0, . . .),

(5)SINRk =
| hHk Bwk |2

∑

k ′ �=k | hHk Bwk ′ |2 +σ 2
,
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3  User scheduling in N‑JSDM
The N-JSDM with user scheduling involves three stages. The first stage is user schedul-
ing, which is used to determine the azimuth angle of the scheduled users and the num-
ber of beams serving each user, denoted by θu and gu , respectively. The second and third 
stages are pre-beamforming and multi-user precoding, which are used to obtain matrix 
B and matrix W , respectively.

In a more realistic scenario with only a limited number of users are randomly dis-
tributed in the cell, it is more reasonable to dynamically allocate the number of beams 
serving each user. Therefore, in the user scheduling stage, we propose to allocate beams 
according to the interference between users and their neighbors. The idea of dynamic 
allocation is also extended to the pre-beamforming stage. In the pre-beamforming stage, 
the obtained θu and gu about the scheduled users are used to design the pre-beamformer. 
Further details regarding the design of the pre-beamformer can be found in Sect. 5. The 
transformation process of addressing the user scheduling problem is outlined below.

Because there is no concept of user group, the user scheduling approach in N-JSDM 
is fundamentally different from that of conventional JSDM. To address this, we propose 
a user scheduling algorithm that solely relies on user directional features. Specifically, 
we use two channel directional features [35]: azimuth angle and AS. Compared to the 
instantaneous CSI, these features are more stable [32, 33], and easier to obtain.

3.1  Problem formulation

The objective of scheduling is to maximize the ESE of the system. Assuming a coherence 
block with TC symbols and pilot length P , the ESE of user k can be expressed as

Note that there is overlapping signal space between some users in the system, and such 
overlapping signal space represents the inter-user interference (IUI). In the OR channel 
model, the angle region of user k is defined as

Based on the angle region, we introduce the overlap angle (OA) to represent the degree 
of overlap between users. If there is an intersection between the angle regions of user k 
and user j , i.e., �k ∩�j �= ∅ , the intersection is called an OA. The OA of user k and user 
j is defined as ( j, k = 1, 2, . . . ,K)

These angles depict the interference among users. Since ω = 2� , the OA between user k 
and user j is nonzero if they are neighbors, and zero otherwise. By using the OA, we can 
construct an angle matrix A , where Akj is the ( k , j)-th element of matrix A . The k-th row 
of the matrix A can be written as

(6)Rk =
(

1− P

TC

)

log2(1+ SINRk).

(7)�k = (θk −�, θk +�).

(8)Akj =
{
− | θk − θj | +2�, | θk − θj |≤ 2�, j �= k;

0, else.

(9)Ak = (Ak1,Ak2, . . . ,AkK ) = (· · · , 0, 0,Ak�k
, 0, 0, . . .),
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where Ak�k
= [Akkl , . . . ,Akku ] is composed of the OA of user k and its neighbors. From 

(9), it can be observed that Ak�k
 has |�k | − 1 nonzero elements, where |�k | refers to the 

number of elements in the index set �k . To distinguish the neighbors and non-neigh-
bors, we introduce an unweighted matrix Â , whose k-th row can be written as

Since the denominator of SINR contains the interference term, there is a strong correla-
tion between IUI and SINR. By reducing interference among users, SINR increases. Fur-
thermore, in practical systems, the length of pilot sequences is often limited. As a result, 
the problem of maximizing the ESE is transformed into minimizing interference while 
adhering to the constraint of maximum pilot length.

To describe the problem, use xi to denote whether user i is selected, i.e.,

Then, the problem of minimizing the sum of OAs with pilot constraints is formulated as

 where U represents the number of scheduled users, βi denotes the weighted factor used 
to adjust the number of beams allocated to each user, gs refers to the average number 
of beams assigned to each user in the system after scheduling, PC represents the maxi-
mum pilot constraint, and x = [x1, x2, . . . , xK ] ∈ {0, 1}K  with xi ∈ {0, 1} . For a more effi-
cient system, we aim to allocate a total number of beams close to M when the number of 
scheduled users is high. Conversely, when the number of scheduled users is low, increas-
ing the number of beams allocated to each user beyond a certain point will not improve 
system performance. Therefore, an upper bound value ξ is set for the number of beams 
assigned to each scheduled user. Based on these considerations, the value of gs is set to 
min(ξ ,M/U) . The specific design details of βi can be found in Sect. 4.

It is evident that the angle matrix A serves as the coefficient matrix in the objective 
function of P1 . In convex quadratic programming, the Hessian matrix of the objective 
function is positive definite. In the case of P1 , the Hessian matrix of the objective func-
tion is represented by L = 2A . If matrix A is positive definite, then according to the 

(10)Âk = (0, . . . , 0, 1, 1, . . . , 1,

userk
︷︸︸︷

0 , 1, . . . , 1
︸ ︷︷ ︸

|�k |−1

, 0, . . . , 0).

(11)xi =
{
1, selected;
0, not selected.

(12)P1 : min
x

K∑

i=1

K∑

j=1

Aijxixj

(12a)s.t.

K∑

i=1

xi = U

(12b)
∑

j∈�i

βigsxj ≤ PC

(12c)x ∈ {0, 1}K ,
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properties of eigenvalues and the necessary and sufficient conditions for a positive defi-
nite matrix, matrix L is also positive definite.

However, due to the fact that all diagonal elements of matrix A are 0 , some of the 
sequential principal minors of matrix A may be smaller than 0 . Therefore, matrix A can-
not be a positive definite matrix. To address this, we add a scalar matrix to matrix A , 
transforming it into a positive definite matrix AP , which can be expressed as

If α surpasses the absolute value of the minimum eigenvalue of matrix A , AP is deemed 
positive definite [36]. For simplicity, we set α as the smallest positive integer that ensures 
the positive definiteness of matrix AP . By replacing the coefficient matrix in the objec-
tive function of P1 with matrix AP , the optimization problem can be transformed into 
the following matrix form

 where e = [1, 1, . . . , 1]T ∈ NK×1 , Âf  is a matrix formed by setting the diagonal elements 
of matrix Â to 1 , nB = [β1gs,β2gs, . . . ,βK gs]T , and βkgs is the number of beams serving 
users in the neighbor domain of user k . It is worth noting that P1 and P2 are equivalent, 
as they share the same optimal solution and their optimal values differ by a constant 
α ·U .

1  Remark

Matrix A (or matrix AP ) is derived from two directional features of the users, namely the 
azimuth angle θ and angular spread � . As a result, the proposed user scheduling algo-
rithm only requires these two directional features to perform the scheduling task.

4  Linearization of 0–1 quadratic programming
In this section, we propose methods to solve βi and the scheduling problem P2.

4.1  Beam allocation based on overlap density

Before scheduling, only azimuth angle θ , AS � and NAS ω can be determined. It is cru-
cial to note that the pre-beamforming matrix B of N-JSDM is solved iteratively, and 
span(B) = span⊥(C̄k)

⋂
span(Ck)

⋂
span⊥(B�k

) , where B�k
= [Bkl ,Bkl+1, . . . ,Bk−1] . 

This implies that the azimuth angle of users must be known during the process of solving 
B , making it challenging to obtain matrix B during the user scheduling process. There-
fore, we propose a beam allocation method based on the overlap density of neighbor 

(13)AP = A + α · IK .

(14)P2 : min
x

xTAPx

(14a)s.t. eTx = U

(14b)nB ⊙ (Âf x) ≤ PC · e

(14c)x ∈ {0, 1}K ,
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domains. The method is aimed at determining the number of columns of the pre-beam-
forming matrix Bk.

Note that when the local distribution of users is dense, it is advisable to use a small 
number of beams to serve these users and use more beams to serve other users. This 
approach is based on the fact that the number of beams in a particular angle area is lim-
ited, and it can not only reduce the pilot overhead but also enable the system to serve 
more users.

The overlap density of the neighbor domain �k is used to describe the average degree 
of overlap between any two users in set �k and can be calculated as

where the numerator represents the sum of OAs between users in �k , the coefficient 12 is 
due to the real symmetry of the angle matrix A , and C2

|�k | =
|�k |!

2!(|�k |−2)! in the denomina-
tor is the combination number formula. Considering that the OA range between users in 
set �k is (0, 2�] . The denominator of Eq. (15) represents the upper bound of the sum of 
OAs between users in �k , which is equal to the superposition of the maximum OAs of 
any two users in �k . It should be noted that the value range of ρk is (0, 1].

Next, ρk is used to determine the average number of beams allocated to each user 
within the set �k . As explained in Sect. 3, the average number of beams serving each 
user in �k is βkgs . Assuming that the value range of βkgs is [gs − τ , gs + τ ] , then the 
expression of βkgs is as follows

As seen in (16), when some users in the system are densely distributed, i.e., the overlap 
density of their neighbor domains is high, the number of beams serving these users will 
decrease, and vice versa. The detail of how to obtain nB is in Algorithm 1.

1  Remark

The value of τ should not be too large, because when the overlap density of the neigh-
bor domain �k is small, the average number of beams serving these users will be close to 
gs + τ . This implies that the total number of beams serving users in this neighbor domain 
will increase by τ |�k | . Additionally, it is essential to emphasize that while solving prob-
lem P2 (which will later be transformed into problem P5 ), we do not have knowledge of 
the exact number of beams serving each user, but only the average value in the neighbor 
domain.

(15)ρk =
1
2

∑

i,j∈�k
Aij

C2
|�k | · 2�

,

(16)βkgs =
{
gs + τ (1− 2ρk) , |�k | �= 1;

gs , |�k | = 1.



Page 11 of 29Liang et al. EURASIP Journal on Advances in Signal Processing          (2024) 2024:1  

Input: θk (k = 1, 2, · · · ,K), ∆, ω, τ , gs
Output: nB
1: Use (8) to get angle matrix A;
2: for k = 1 : K do
3: Obtain the edge neighbor users kl and ku of user k;
4: end for
5: for k = 1 : K do
6: Use (15) to get the overlap density ρk;
7: Use (16) to get the average number of beams serving users in the user k’s neighbor domain;
8: end for
9: return nB

Algorithm 1 Beam Allocation Based on Overlap Density

4.2  Linearization

Note that the user scheduling problem in P2 is a 0–1 quadratic programming problem 
whose computational complexity increases exponentially with the problem size. To solve 
P2 with a low-computational complexity, we further transform it into a 0–1 mixed inte-
ger linear programming as follows. Consider the following optimization problem

where z ∈ RK×1 and s ∈ RK×1.

Theorem 1 P2 has an optimal solution x∗ if and only if there are z∗ and s∗ such that 
(x∗, z∗, s∗) is an optimal solution to P3 , and P2 and P3 have the same optimal solution.

1  Proof
See Appendix A.
It can be observed that the constraint (17b) in P3 is quadratic, so P3 is not a lin-
ear programming. To further process P3 , we proceed as follows: From (17b), we 
can deduce that if xi = 1 , then zi must be 0 , but if xi  = 1 , then zi is not necessarily 0 . 
Moreover, from (17a), we have z ≤ APx , implying an upper bound on z . Thus, we have 
z ≤ APx ≤ �AP�∞ · e , where �AP�∞ = maxi

∑K
j=1 |aij| is the infinite norm of the matrix 

AP . By letting MT = �AP�∞ and using z ≤ MT (e− x) to replace zTx = 0 , we can trans-
form P3 into the following form

(17)P3 : min
x,z,s

eT s

(17a)s.t. APx − z − s = 0

(17b)zTx = 0

(17c)eTx = U

(17d)nB ⊙ (Âf x) ≤ PC · e

(17e)z ≥ 0, s ≥ 0, x ∈ {0, 1}K ,
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 �

Theorem 2 (x, z, s) is a feasible solution of P3 if and only if (x, z, s) is a feasible solution 
of P4 ; (x, z, s) is an optimal solution of P3 if and only if (x, z, s) is an optimal solution of P4

.

1  Proof
When (x, z, s) is a feasible solution of P3 , obviously (x, z, s) is a feasible solution of P4 . 
Assuming that P4 has a feasible solution (x, z, s) , because of 0 ≤ z ≤ MT (e− x) , when 
xi = 1 , there must be zi = 0 , while xi  = 1 implies that z ≤ MT . Therefore, we can obtain 
zTx = 0 , indicating that (x, z, s) is also a feasible solution of P3 . Similarly, it can be proven 
that (x, z, s) is an optimal solution of P3 if and only if (x, z, s) is an optimal solution of P4.

4.3  The algorithm to obtain scheduled users and beams

It is worth noting that the solution space dimension of P4 is 3K  . This implies that if the 
number of original users in the system is large, the solution space dimension of P4 will 
also be large. As the computational complexity grows with the size of the problem, P4 
still has a high complexity when the user scale is large. Thus, we simplify P4 as follows: 
Since APx − z − s = 0 ⇔ APx − s = z and 0 ≤ z ≤ MT (e− x) , the constraints (18a) 
and (18b) can be transformed into 0 ≤ APx − s ≤ MT (e− x) . Hence, P4 can be trans-
formed into

(18)P4 : min
x,z,s

eT s

(18a)s.t. APx − z − s = 0

(18b)z ≤ MT (e− x)

(18c)eTx = U

(18d)nB ⊙ (Âf x) ≤ PC · e

(18e)z ≥ 0, s ≥ 0, x ∈ {0, 1}K .

(19)P5 : min
x,z,s

eT s

(19a)s.t. APx − s ≥ 0

(19b)APx − s ≤ MT (e− x)

(19c)eTx = U
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P5 is a mixed integer linear programming that can be solved using the branch and bound 
algorithm. Here, we implemented the branch and bound algorithm using the MOSEK opti-
mization solver [37] in the CVX toolbox.

1  Remark

In practical scenarios, local users may be densely distributed, and/or the pilot require-
ments PC may be too strict, leading to situations where problem P5 has no solution. In 
such cases, we choose to gradually reduce the number of scheduled users U until they can 
be effectively served. To achieve this, we reduce one user at a time, update gs , and then 
recalculate the solution of P5 based on the updated conditions.

Once P5 has been solved, we can determine the average number of beams serving each 
user in each neighbor domain and the scheduled users. However, the exact number of 
beams serving each user remains unknown. To address this issue, we utilize a linear sys-
tem of equations to calculate gk . Firstly, we sort the users in ascending order based on their 
azimuth angle and obtain the angle matrix AS of the scheduled users. We set its diagonal 
elements to 1 and convert it into an unweighted matrix ÂS . Then, we sum the rows of the 
matrix and convert it into a diagonal matrix DS . The form of matrix DS is as follows

We can also get the βkgs(k = 1, 2, . . . ,K ) corresponding to the remaining users and sort 
them in ascending order, i.e., ňB = (β̌1gs, β̌2gs, . . . , β̌Ugs) . Considering that some users 
are neighbors with each other but non-neighbors with other users, we take the average 
of β̌u for these neighbor users. The system of equations for solving gu(u = 1, 2, . . . ,U) is 
as follows

The solution of g is g = [g1, g2, . . . , gU ]T = (ÂS)
†DSňB . As the solution for gu may con-

tain decimal values, we perform round down operation on it, i.e., gu = ⌊gu⌋ , and set the 
solution of gu to 1 if it is less than 1 . Please refer to Algorithm 2 for the details of solving 
P5 and determining the number of beams.

(19d)nB ⊙ (Âf x) ≤ PC · e

(19e)s ≥ 0, x ∈ {0, 1}K .

(20)DS = diag(|�1|, |�2|, . . . , |�U |).

(21)ÂSg = DSňB.
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Input: θk (k = 1, 2, · · · ,K), U, ∆, ω, PC
Output: x, g
1: Initialize x = ∅;
2: Obtain angle matrix A;
3: Obtain unweighted matrix Â and Âf;
4: Obtain positive definite matrix AP;
5: Obtain infinite norm MT;
6: while x = ∅ do
7: Set gs = M/U;
8: Use Algorithm 1 to obtain nB;
9: Solve optimization problem P5;
10: Set U = U− 1;
11: end while
12: Obtain unweighted matrix ÂS;
13: Obtain diagonal matrix DS;
14: Use (21) to get g;
15: return x, g

Algorithm 2 Acquisition of Scheduling users and the number of beams

There are a total of three benchmark algorithms considered in this paper. It should 
be noted that user scheduling and pre-beamforming in the active channel sparsification 
[22] method are coupled, requiring the solution of a mixed integer linear programming 
for joint beam and user selection. However, without specifying the optimization toolkit 
used, it is not possible to determine its computational complexity. Therefore, we con-
duct a brief analysis and comparison of the computational complexity of proposed algo-
rithm and the other two benchmark algorithms. The user scheduling in conventional 
JSDM schemes consists of two stages: user grouping and intra-group user scheduling. 
In the user grouping stage, the computational complexity of the K-means user grouping 
method with chordal distance in [25] is O(NitKG(2M3 +M2)) , where Nit is the default 
number of iterations. The computational complexity of the agglomerative user clustering 
method with chordal distance in [28] is O(K (K−1)

2 (2M3 +M2)) . Since intra-group user 
scheduling is often coupled with beamforming design, it would be unfair to compare its 
computational complexity with our proposed algorithm. The computational complexity 
of the greedy intra-group user scheduling algorithm in [26] is O(UK ) after modifying the 
termination condition to scheduling U users and the complexity of beamforming design 
being ignored. It can be observed that the user grouping stage is the main contributor to 
the complexity.

In contrast, the computational complexity of our proposed algorithm (Algorithm  2) 
depends on the complexity of two sub-processes: Algorithm 1 and optimization prob-
lem P5 . The computational complexity of Algorithm 1 is O(K (K − 1)) , where K − 1 is 
the number of times to determine the edge neighbors of each user. Optimization prob-
lem P5 is solved using the branch and bound method, with a computational complexity 
of O(22K ) , where 2K represents the problem scale. Therefore, the overall computational 
complexity of our proposed algorithm is O(U(K (K − 1)+ 22K )).

4.4  Discussion on proposed user scheduling algorithm

This scheme has three advantages. First, it proposes a beam allocation method that con-
siders the overlap density in the neighboring domain, which guarantees that all sched-
uled users can be served. This is due to the problem that the pre-beamforming design 
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method with constrained DTL in N-JSDM cannot be implemented because of the dense 
local user distribution. Second, the scheme takes into account the influence of the pilot. 
Furthermore, the scheme is adaptive. If there is no solution to the optimization prob-
lem, the number of scheduled users will be gradually reduced until they can be served. 
Gradually reducing the number of scheduled users in practical scenarios until they can 
be effectively served brings the following benefits: reduced system load, improved user 
experience, and decreased interference levels, among others [25].

Figures 1 and 2 illustrate two examples of user scheduling results in a macro-cell sce-
nario. Figures  1a and 2a are drawn from the same initial distribution of users, as are 
Figs.  1b and 2b. In Fig.  1, the hollow diamond at the center represents the massive 
MIMO base station, and the large circle indicates the coverage area with a radius of 50 
km. Other markers represent users, where hollow circles denote unscheduled users, and 
solid circles represent scheduled users. In certain scenarios, the actual number of sched-
uled users, denoted as U ′ , may fall short of our expectations due to unfavorable initial 
user distributions and stringent pilot conditions (for example, Fig. 1b).

Fig. 1 User scheduling scenarios
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In Fig. 2, we employ bar graphs to illustrate the scheduling status of users. The vertical 
axis represents the average number of beams serving each user in their respective neigh-
borhoods, while the horizontal axis represents the user indices. Unfilled bars indicate 
unscheduled users, while filled bars indicate scheduled users. It can be observed that 
when the system imposed a limited length of pilots, the desired number of scheduled 
users cannot be achieved, resulting in U ′ < U . In such cases, the relationship between 
the average number of beams serving users in their neighborhoods and their scheduling 
status is not evident. The high average number of beams serving each user in the neigh-
borhood can be attributed to two factors: low overlap density in user neighborhoods and 
users having fewer neighbors. According to the expression of the pilot (22), we know 
that the pilot is not only related to the number of neighbors but also to the total number 
of beams serving users in their neighborhoods. Hence, even if the average number of 
beams per user is relatively small, a subset of users will still be scheduled to ensure the 
scheduling of U’ users within the limited pilot length. User 16 and user 36 in Fig. 2a and 
user 20 and user 21 in Fig. 2b serve as examples of this scenario.

Figure  3 displays the ESEs under different PC s. As PC increases, the ESE initially 
increases and then levels off. This indicates that a small number of PC s often leads to a 

Fig. 2 Average number of beams under different pilot constraints
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failure in scheduling the expected number of users, resulting in performance degrada-
tion. Furthermore, it can be observed that a small value of parameter ξ primarily helps 
to maintain a better level of ESE when PC is relatively small. Additionally, as shown in 
Fig. 3b, when the number of scheduled users is small, the value of PC that results in a 
smoother ESE will also decrease proportionally. From Fig. 3b, we can also observe that 
when the number of scheduled users is small and PC is large, the ESE for ξ = 2 is sig-
nificantly lower than for other values. This discrepancy occurs because a larger PC value 
generally leads to a higher likelihood of achieving the expected number of scheduled 
users. Considering the condition M/U > 2 , it implies that with ξ = 2 , fewer beams are 
allocated to each user compared to other values. This limitation restricts the column 
number of B to a significantly smaller value than the number of antennas M, resulting 
in a larger discrepancy between the column space of B and the column space of C com-
pared to other values. Consequently, the ESE is lower for ξ = 2 . Therefore, the param-
eter ξ should be set based on both PC and the number of scheduled users U to optimize 
system performance.

Fig. 3 Comparison of the ESEs under different PC s. K = 36 , � = 5
◦ , NAS = 10

◦ , SNR = 20 dB
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5  Pre‑beamformer design with dynamic beam configuration
We now present the dynamic pre-beamformer design for scheduled users, which dif-
fers from previous pre-beamformer designs in N-JSDM by considering the specific user 
distribution to dynamically configure the beams. The previous designs include the opti-
mal design and the design method with constrained DTL [21]. While the optimal design 
achieves good performance with a large DTL, it is not suitable for pilot-constrained sce-
narios. To reduce the DTL, the constrained DTL design limits the number of columns of 
the pre-beamforming matrix for each user [21]. Specifically, the number of columns of 
the pre-beamforming matrix B is set to ⌊gK⌋ , where g = M/K  , and ⌊·⌋ is the round down 
operation. The number of columns in Bk is ⌊gk⌋ − ⌊g(k − 1)⌋.

However, the constrained DTL design method has a fixed number of columns for Bk , 
which makes it unsuitable for scenarios with randomly distributed users. Therefore, we 
propose dynamically configuring the number of columns in Bk . Notably, in scenarios 
with harsh pilot conditions, the optimal design may not meet the transmission require-
ment, while our proposed method can satisfy it. In the following, we describe how to 
implement this method using the obtained θu and gu.

Assume that θu and gu of the scheduled users are given. For the unity of symbols, we 
still use the subscript k to denote the parameters related to user k in this section. From 
Eq. (4), we can know that user k only needs to feed back hHk B�k

 to BS. The feedback 
length dk equals to the number of elements of hHk B�k

 , i.e., the number of columns of 
B�k

 . The minimum DTL is L = maxk dk . In this work, we consider the case where the 
pilot is the minimum DTL.

In this paper, the pilot length is limited. Since the number of columns of matrix Bk is 
gk , the index set of user k and its neighbors has a linear relationship with the number of 
columns of B�k

 , i.e., the number of neighbors of the user has a linear relationship with 
the number of pilots. The pilot length P is given by

To mitigate the non-neighbors’ interference of user k, the pre-beamforming matrix B 
needs to be designed satisfying Eq. (3). Considering that if user i is a neighbor of user k, 
then conversely, user k is also a neighbor of user i. Therefore, we can regard Eq. (3) as the 
problem of designing matrix Bk to satisfy

for each k. According to Karhunen–Loeve representation, we can express the channel 
vector of user k as hk = C1/2

k zk , where C1/2
k  is a Hermitian matrix. Substituting this into 

Eq. (23), we obtain the equivalent form

During the pre-beamforming stage, only the CCMs Ck are available at the BS. Without 
the knowledge of zi , Eq. (24) can be reformulated as

(22)P = max
�k

∑

i∈�k

gi.

(23)hHi Bk = 0, i ∈ �̄k ,

(24)zHi C
1/2
i Bk = 0, i ∈ �̄k .

(25)C1/2
i Bk = 0, i ∈ �̄k .
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This implies span(Bk) ⊆ span⊥(C1/2
i ) for each i ∈ �̄k . Based on Lemma 1 in [21], we 

have span(Bk) ⊆ span⊥(C̄k) , where C̄k =
∑

i∈�̄k
Ci.

To fully utilize the signal space and achieve large spectral efficiency, we design span(B) 
to be close to span(C) . This is because the spectral efficiency of the system will be maxi-
mized when design B satisfying SC ∩ span(H) ⊆ span(B) where SC =

⋃
span⊥(C̄k) , and 

span(H) ⊆
⋃

span(Ck) ⊆ SC [21]. The difference between two spaces is represented by 
the chordal distance [25], and the chordal distance of spaces span(C) and span(B) is

where � · �F is the Frobenius norm, UC and UB are the orthonormal basis of spaces 
span(C) and span(B) , respectively. In order to design span(B) approaching to span(C) , 
the chordal distance between span(C) and span(B) should be minimized, and the prob-
lem of designing B is formalized as

 where constraint (27a) ensures that the effective channel matrix is a band matrix and 
C̄k =

∑

i∈�̄k
Ci , constraint (27b) ensures that the design of matrix B meets the pilot 

requirements. P6 is solved iteratively using a greedy algorithm. First, the space span(C) 
is divided into K  subspaces, i.e., Sk = span(Ck), k = 1, 2, . . . ,K  . Then iteratively solves 
the pre-beamforming matrix Bk such that the chordal distance between Sk and 

⋃k
j=1 Bj is 

minimized. When the iteration is complete, DC(span(B), span(C)) will be small. In the k
-th iteration, the problem of designing Bk is as follows

 where Gk = [B1,B2, . . . ,Bk ] . Setting the number of columns of the matrix Bk to the 
obtained value gk during the user scheduling stage ensures that the actual pilots of the 
system are less than or equal to PC . This is because of the constraint (12b) of the user 
scheduling problem P1.

Let USk
 be the orthogonal basis of Sk . Since Gk is the orthogonal basis of span(Gk) , we 

have

(26)DC(span(B), span(C)) =� UBU
H
B −UCU

H
C �2F ,

(27)P6 : min
B

DC(span(B), span(C))

(27a)s.t. span(Bk) ⊆ span⊥(C̄k), k = 1, 2, . . . ,K

(27b)col(B�k
) ≤ PC

(27c)BHB = I,

(28)P7 : min
Bk

DC(span(Gk),Sk)

(28a)s.t. span(Bk) ⊆ span⊥(C̄k)

(28b)col(Bk) = gk

(28c)GH
k Gk = I,
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Taking into account the non-negativity property of the Frobenius norm, we now just 
focus on � Gk−1G

H
k−1 + BkB

H
k −USk

UH
Sk

�F . Denoting T = Gk−1G
H
k−1 −USk

UH
Sk

 , we 
have

Based on the property of trace, we can derive B = B̄�k
UεN , where B̄�k

 is the orthogonal 
basis of the space span⊥(B�k

) , and Uε is the matrix composed of the eigenvectors cor-
responding to the eigenvalues of the matrix B̄�k

R̄k less than ε . For detailed derivations, 
please refer to [21]. Unlike the design method with constrained DTL, N is an unitary 
matrix composed by the eigenvectors of UH

ε B̄H
�k

(USk
UH

Sk
)B̄�k

Uε corresponding to the gk 
largest eigenvalues. Once we get N , we can use Bk = B̄�k

UεN to get Bk.
Figure  4 illustrates the chordal distance of different iterations. It should be note 

that, given the dimension of these two spaces (e.g.,N1 and N2 ), a chordal distance of 
0 indicates that the spaces are the same. When the chordal distance reaches its maxi-
mum value of N1 + N2 , the spaces are orthogonal to each other. From Fig.  4, we can 
observe that in each iteration, the chordal distance between Bk and Ck remains small but 
nonzero. This is because Bk is designed not only to approximate Ck , but also to lie in the 
null space of the CCM C̄k . The chordal distance between span(B) and span(C) gradually 
increases with the number of iterations. This can be attributed to the increasing dimen-
sion of span(B) over the course of iterations. Therefore, even though span(B) is designed 
to approach span(C) incrementally, their chordal distance still increases.

(29)
DC(span(Gk),Sk) =� GkG

H
k −USk

UH
Sk

�2F
=� Gk−1G

H
k−1 + BkB

H
k −USk

UH
Sk

�2F .

(30)
� BkB

H
k + T �F = Tr

(
(BkB

H
k + T)(BkB

H
k + T)H

)

= Tr
(
BkB

H
k

)
+ 2Tr

(
BkB

H
k T

)
+ Tr

(
TTH

)
.

Fig. 4 The chordal distance of different iterations. K = 20 , U = 10 , � = 5
◦ , NAS = 10

◦ , SNR = 20 dB , 
PC = 20 , ξ = 4
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6  Simulation results
In this section, we provide the simulation results of the proposed algorithm. A ULA with 
M = 64 antennas at the BS is considered, and K = 36 single-antenna users are served. 
The azimuth center angle of each user is uniformly distributed in [−π

3 ,
π
3 ] and the angu-

lar spread � is 5◦ . For JSDM, the users are partitioned into G groups, and the number of 
G is proportional to the number of users, i.e., G = ⌊K/6⌋ . The value τ in Sect. 4 is set to 1 . 
The parameters in the design of the pre-beamforming matrix B are consistent with those 
in [21].

The user scheduling in conventional JSDM consists of two parts: user grouping and 
intra-group user scheduling. The user grouping stage utilizes the K-means algorithm 
with chordal distance [25] and the agglomerative user algorithm [28] for grouping users 
(where the effective channel dimension in the g-th group is ⌊M/G⌋ ). The user scheduling 
stage employs the algorithm from [26] for scheduling. Given the user grouping, the ESE 
for scheduled user k in group g is ηg ,k = (1− DTLg ,k

TC
) log2(1+ SINRg ,k) , where SINRg ,k 

denotes the SINR of user k(k = 1, 2, . . . ,Kg ) in group g and then the overall ESE is 
Rcon =

∑G
g=1

∑

k∈κg ηg ,k.
The expected number of active users to be scheduled each time is U . Figure 5 illus-

trates the ESEs of all algorithms under different SNRs. Our proposed algorithm (denoted 
by N-JSDM Mixed integer) is compared with two benchmark algorithms of conventional 
JSDM user scheduling (denoted by JSDM Agglomerative & Greedy and JSDM K-means 
& Greedy, respectively), the active channel sparsification method (denoted by ACS) as 
well as N-JSDM with random user scheduling (denoted by N-JSDM Random). The num-
ber of scheduled users in Fig. 5a, b is 30 , while the number of scheduled users in Fig. 5c 
is 24 . TC in Fig. 5a, c are 100 , and TC in Fig. 5b is 50 . All algorithms exhibit increasing 
ESE with higher SNR values. It can be seen that our proposed algorithm achieves higher 
ESE compared to the other algorithms. The performance difference between JSDM 
Agglomerative & Greedy and JSDM K-means & Greedy stems from their user group-
ing schemes. The agglomerative user clustering method does not depend on the initial 
choices of the cluster centers [28]. The ACS consistently exhibits lower ESE compared 
to other algorithms. This is because the ACS method approximates the downlink CCM 
of users using the columns of the discrete Fourier transformation matrix compared to 
other algorithms. This approximation enlarges the energy of both the received signal and 
interference, and the inter-user interference is directly proportional to the transmission 
power. When the transmission power is at low level, noise dominates over inter-user 
interference, and due to the large received power of the signal, the ACS method achieves 
a large SINR, resulting in a high ESE. However, as the transmission power increases, 
inter-user interference also increases, leading to no improvement in ESE with increas-
ing SNR. All algorithms except for ACS exhibit similar performance at low SNR. This 
similarity arises from the fact that in smaller NAS, the impact of DTL on ESE is not 
significant, and ESE is primarily influenced by spectral efficiency. As the SNR increases, 
our algorithm achieves higher ESE by minimizing interference and considering spectral 
overhead. From Fig. 5, it can be observed that the performance gap between N-JSDM 
and JSDM widens as the number of users increases. This widening gap is attrib-
uted to the larger loss of signal space caused by JSDM grouping when the number of 
users is high, whereas N-JSDM, utilizing the neighbor strategy, can fully leverage the 
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signal space, resulting in more significant advantages. Since the ACS method is primarily 
designed for scenarios where the number of antennas tends to infinity, detailed analysis 
of ACS performance will not be included in the following simulation.

Fig. 5 Comparison of the ESEs under different SNR s. K = 36 , � = 5
◦ , NAS = 10

◦ , PC = 20 , ξ = 4
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Fig. 6 Comparison of the ESEs under different TC s. K = 36 , � = 5
◦ , NAS = 10

◦ , SNR = 20 dB , PC = 20 , ξ = 4

Fig. 7 Comparison of the ESEs under different number of scheduled users. K = 36 , � = 5
◦ , NAS = 10

◦ , 
SNR = 20 dB , TC = 100 , PC = 20 , ξ = 4
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Figure 6 shows the ESEs of all algorithms under different TC s. The weight of spectral 
overhead in ESE varies with TC . When TC is small, the influence of spectral overhead 
becomes significant since the DTL is positioned in the fractional numerator. As TC grad-
ually increases, the influence of spectral overhead diminishes, and the significance of 
spectral efficiency becomes more pronounced. Consequently, the ESE exhibits a gradual 
upward trend.

Figure 7 depicts the ESEs of all algorithms under different numbers of scheduled users. 
Several noteworthy observations can be made. Firstly, the ESEs of N-JSDM algorithms 
increase as the number of scheduled users grows, albeit at a gradually slowing rate. This 
is because increasing the number of users can enhance spectral efficiency, but it also 
leads to an increase in interference between users. Secondly, when the number of sched-
uled users reaches a certain threshold, the performance of conventional JSDM schemes 
with user scheduling begins to decline. This indicates that as the number of users in 
the system becomes larger, the performance degradation caused by JSDM grouping 
becomes more pronounced. Thirdly, due to the approximation used for the CCM, the 
performance of the ACS method is consistently lower than other algorithms.

In addition, we have conducted additional simulations to evaluate the performance 
of our proposed algorithm under extreme conditions. These simulations aim to assess 
the algorithm’s robustness and its behavior in challenging scenarios, including scenarios 
with extremely low SNR and non-uniform user distributions. The performance of the 
N-JSDM Random is not shown in the following as it is expected that random user sched-
uling performs inferior to our proposed algorithm. Our focus is on the performance dif-
ferences between the proposed algorithm and the other benchmark algorithms.

Figure 8 presents the ESEs of all algorithms under different extremely low SNR condi-
tions. It is evident from Fig. 8 that our proposed algorithm consistently achieves higher 
ESE compared to other algorithms. This superiority stems from our algorithm’s sched-
uling objective of minimizing system interference, which enables better reduction of 

Fig. 8 Comparison of the ESEs under various extremely low SNR s. K = 36 , U = 30 , � = 5
◦ , NAS = 10

◦ , 
TC = 100 , PC = 20 , ξ = 4
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inter-user interference in low SNR scenarios. The performance of JSDM Agglomerative 
& Greedy and JSDM K-means & Greedy is similar, as they both utilize the same schedul-
ing criterion, namely maximizing SINR. The slight performance differences arise from 
their distinct user grouping methods. On the other hand, the ACS method exhibits the 
poorest performance due to the approximation employed for the CCM.

Figure 9 illustrates the ESEs of all algorithms under different user distributions, with a 
standard deviation of 20 for the normal distribution. Comparing it to Fig. 5a, it is evident 
that the performance of all algorithms experiences a significant decline. This decrease in 
performance can be attributed to the extreme user distribution, which leads to densely 
populated local user clusters, making it challenging to achieve the desired number of 
scheduled users. Furthermore, the interference among the scheduled users is substan-
tial, further contributing to the degradation in performance. To enhance visual clar-
ity, we have omitted the curve for JSDM K-means & Greedy, which exhibits marginally 
lower performance compared to JSDM Agglomerative & Greedy.

7  Conclusion
We proposed a user scheduling method in massive MIMO systems using channel direc-
tional characteristics and proposed a dynamic beam allocation method matching the 
proposed user scheduling. Compared with the complete CSI-based schemes, the two 
directional features used in this paper, i.e., the azimuth angle and the AS, are generally 
stable over large time scales. The proposed method scheduled users using mixed integer 
programming, aiming to improve system performance. Simulations validated the supe-
riority of the proposed method. In our future work, we will extend our method to more 
channel models, such as Saleh-Valenzuela geometric model and multiple scatterer clus-
ters model.

Fig. 9 Comparison of the ESEs under various user distributions. K = 36 , U = 30 , � = 5
◦ , NAS = 10

◦ , 
TC = 100 , PC = 20 , ξ = 4
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Appendix
A.1 Proof of Theorem 1

Necessity
Let x∗ be the optimal solution of P2 . Since the elements of matrix AP are non-negative and 
∀xi ∈ {0, 1} , we have APx ≥ 0 . Thus for x satisfying eTx = U  and nB ⊙ (Âf x) ≤ PC · e , 
there must exist z ≥ 0, s ≥ 0, z, s ∈ RK×1 such that 

For x∗ , z∗ and s∗ satisfying (17a) and (17b), eT s∗ is the smallest among all eT s.
In the following, we prove that (x∗, z∗, s∗) is the optimal solution P3 . Use x∗ to replace 

x in (17a), and left-multiply x∗T at both ends, we have

Due to the constraint z∗Tx∗ = 0 , Eq. (31) is equivalent to

Since x∗TAPx
∗ is the smallest among all xTAPx , x∗T s∗ is also the smallest among all 

xT s . If it can be proved

since (x∗, z∗, s∗) satisfies the constraints of P3 , (x∗, z∗, s∗) is the optimal solution of P3 , 
and P2 and P3 have the same optimal value.

Equation (33) is proved in the following. First, it can be shown that there must be 
s∗i = 0 for ∀i satisfying x∗i = 0 . Assuming this does not hold, then there exists some is 
such that when x∗is = 0 , s∗is > 0 , and consequently, eT s∗ is the smallest of all eT s . Define 
new z̃ and s̃ . For j = 1, 2, . . . ,K  , when j = is , let z̃j = z∗is + s∗is , s̃j = 0 ; when j  = is , let 
z̃j = z∗j , s̃j = s∗j  . Since z̃ + s̃ = z∗ + s∗ , then (x∗, z̃, s̃) also satisfies (17a) and (17b), but 
eT s̃ < eT s∗ , which contradicts the method of choosing s∗ . Thus, there must be s∗i = 0 for 
∀i satisfying x∗i = 0 , and Eq. (33) holds. As a result, (x∗, z∗, s∗) is the optimal solution of 
P3 , and P2 and P3 have the same optimal value.
sufficiency : In the following, we prove that if (x∗, z∗, s∗) is the optimal solution of P3 , 

then x∗ is the optimal solution of P2 . We use the contradiction method to complete the 
proof.

Assuming that x∗ is not the optimal solution of P2 , and x̄ is the optimal solution of P2 , 
then x̄TAP x̄ < x∗TAPx

∗ . Since x̄ is the optimal solution of P2 , according to the method 
of finding the optimal solution of P3 in necessity, z̄ and s̄ satisfying (17a) and (17b) can 
be obtained, and eT s̄ is minimized. From the proof of necessity, it can be known that 
(x̄, z̄, s̄) is the optimal solution of P3 and satisfies

(17a)APx − z − s = 0

(17b)zTx = 0.

(31)x∗TAPx
∗ − x∗T z∗ − x∗T s∗ = 0.

(32)x∗TAPx
∗ = x∗T s∗.

(33)x∗T s∗ = eT s∗,

(34)x̄TAP x̄ = x̄T s̄ = eT s̄.
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However, since (x∗, z∗, s∗) is the optimal solution of P3 , it follows from the proof of 
necessity that

Since x̄TAP x̄ < x∗TAPx
∗ , eT s∗ > eT s̄ can be obtained, which contradicts that (x∗, z∗, s∗) 

is the optimal solution of P3 . Hence, Theorem 1 is proved.
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