Skip to main content
  • Research Article
  • Open access
  • Published:

Decoding Schemes for FBMC with Single-Delay STTC

Abstract

Orthogonally multiplexed Quadrature Amplitude Modulation (OQAM) with Filter-Bank-based MultiCarrier modulation (FBMC) is a multicarrier modulation scheme that can be considered an alternative to the conventional orthogonal frequency division multiplexing (OFDM) with cyclic prefix (CP) for transmission over multipath fading channels. However, as OQAM-based FBMC is based on real orthogonality, transmission over a complex-valued channel makes the decoding process more challenging compared to CP-OFDM case. Moreover, if we apply Multiple Input Multiple Output (MIMO) techniques to OQAM-based FBMC, the decoding schemes are different from the ones used in CP-OFDM. In this paper, we consider the combination of OQAM-based FBMC with single-delay Space-Time Trellis Coding (STTC). We extend the decoding process presented earlier in the case of transmit antennas to greater values of . Then, for , we make an analysis of the theoretical and simulation performance of ML and Viterbi decoding. Finally, to improve the performance of this method, we suggest an iterative decoding method. We show that the OQAM-based FBMC iterative decoding scheme can slightly outperform CP-OFDM.

Publisher note

To access the full article, please see PDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Le Ruyet.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Lélé, C., Le Ruyet, D. Decoding Schemes for FBMC with Single-Delay STTC. EURASIP J. Adv. Signal Process. 2010, 689824 (2010). https://doi.org/10.1155/2010/689824

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1155/2010/689824

Keywords