Skip to main content
  • Research Article
  • Open access
  • Published:

A Survey of Architecture and Function of the Primary Visual Cortex (V1)

Abstract

The largest visual area, known as the primary visual cortex or V1, has greatly contributed to the current understanding of mammalian and human visual pathways and their role in visual perception. The initial discovery of orientation-sensitive neurons in V1, arranged according to a retinotopic mapping, suggested an analogy to its function as a low-level feature analyzer. Subsequent discoveries of phase, spatial frequency, color, ocular origin, and direction-of-motion-sensitive neurons, arranged into overlapping maps, further lent support to the view that it performs a rich decomposition, similar to signal processing transforms, of the retinal output. Like the other cortical areas, V1 has a laminar organization with specialization for input from the relayed retinal afferents, output to the higher visual areas, and the segregation of the magno (motion) and parvo (form) pathways. Spatially lateral connections that exist between neurons of similar and varying properties have also been proposed to give rise to a computation of a bottom-up saliency map in V1. We provide a review of the selectivity of neurons in V1, laminar specialization and analogies to signal processing techniques, a model of V1 saliency computation, and higher-area feedback that may mediate perception.

References

  1. Holmes G: Disturbances of vision by cerebral lesions. British Journal of Ophtalmology 1918, 2: 353–384. 10.1136/bjo.2.7.353

    Google Scholar 

  2. Flechsig PE: Gehirn und Steele. Veit, Leipzig, Germany; 1896.

    Google Scholar 

  3. Cowey A: Projection of the retina on to striate and prestriate cortex in the squirrel monkey, Saimiri sciureus. Journal of Neurophysiology 1964,27(3):366–393.

    Google Scholar 

  4. Hubel DH, Wiesel TN: Early exploration of the visual cortex. Neuron 1998,20(3):401–412. 10.1016/S0896-6273(00)80984-8

    Google Scholar 

  5. Winder SAJ: A brief survey of central mechanisms in primate visual perception. preprint, 2002

  6. Olshausen BA, Field DJ: How close are we to understanding V1? Neural Computation 2005,17(8):1665–1699. 10.1162/0899766054026639

    MATH  Google Scholar 

  7. Bolton T: General anatomy of the visual system. 2002, https://doi.org/www.undergrad.ahs.uwaterloo.ca/tbolton/Anatomy.htm

    Google Scholar 

  8. Zeki S: A Vision of the Brain. Blackwell Scientific, London, UK; 1993.

    Google Scholar 

  9. Lennie P: Single units and visual cortical organization. Perception 1998,27(8):889–935. 10.1068/p270889

    Google Scholar 

  10. Ungerleider LG, Mishkin M: Two cortical visual systems. In Analysis of Visual Behavior. MIT press, Cambridge, Mass, USA; 1982:549–586.

    Google Scholar 

  11. Merigan WH, Maunsell JHR: How parallel are the primate visual pathways? Annual Review of Neuroscience 1993, 16: 369–402. 10.1146/annurev.ne.16.030193.002101

    Google Scholar 

  12. Wandell BA: Foundations of Vision. Sinauer Associates, Sunderland, Mass, USA; 1995.

    Google Scholar 

  13. Olshausen BA: Principles of image representation in visual cortex. In The Visual Neurosciences. Edited by: Chalupa LM, Werner JS. MIT Press, Cambridge, Mass, USA; 2003:1603–1615.

    Google Scholar 

  14. Henry GH: Afferent inputs, receptive field properties and morphological cell types in different laminae of the striate cortex. In The Neural Basis of Visual Function, Vision and Visual Dysfunction. Volume 4. CRC Press, Boca Raton, Fla, USA; 1989:223–245.

    Google Scholar 

  15. Lennie P, Movshon JA: Coding of color and form in the geniculostriate visual pathway (invited review). Journal of the Optical Society of America A: Optics, Image Science, and Vision 2005,22(10):2013–2033. 10.1364/JOSAA.22.002013

    Google Scholar 

  16. Callaway EM: Structure and function of parallel pathways in the primate early visual system. Journal of Physiology 2005,566(1):13–19. 10.1113/jphysiol.2005.088047

    Google Scholar 

  17. Barlow HB: Possible principles underlying the transformation of sensory messages. In Sensory Communication. Edited by: Rosenblith WA. MIT Press, Cambridge, Mass, USA; 1961:217–234.

    Google Scholar 

  18. Atick JJ: Could information theory provide an ecological theory of sensory processing? Network: Computation in Neural Systems 1992,3(2):213–251. 10.1088/0954-898X/3/2/009

    MATH  Google Scholar 

  19. Atick JJ, Li Z, Redlich AN: Understanding retinal color coding from first principles. Neural Computation 1992,4(4):559–572. 10.1162/neco.1992.4.4.559

    Google Scholar 

  20. Allard F: KIN 356 Course Notes Winter 2002. 2002.

    Google Scholar 

  21. Kaplan E, Benardete E: The dynamics of primate retinal ganglion cells. Progress in Brain Research 2001, 134: 17–34.

    Google Scholar 

  22. Li Z: Different retinal ganglion cells have different functional goals. International Journal of Neural Systems 1992,3(3):237–248. 10.1142/S012906579200019X

    Google Scholar 

  23. Erişir A, Van Horn SC, Sherman SM: Relative numbers of cortical and brainstem inputs to the LGN. Proceedings of the National Academy of Sciences of the United States of America 1997,94(4):1517–1520.

    Google Scholar 

  24. Henry GH, Michalski A, Wimborne BM, McCart RJ: The nature and origin of orientation specificity in neurons of the visual pathways. Progress in Neurobiology 1994,43(4–5):381–437. 10.1016/0301-0082(94)90061-2

    Google Scholar 

  25. Sillito AM, Cudeiro J, Murphy PC: Orientation sensitive elements in the corticofugal influence on centre-surround interactions in the dorsal lateral geniculate nucleus. Experimental Brain Research 1993,93(1):6–16.

    Google Scholar 

  26. Das A: Cortical maps: where theory meets experiments. Neuron 2005,47(2):168–171. 10.1016/j.neuron.2005.07.004

    MathSciNet  Google Scholar 

  27. Li Z: A saliency map in primary visual cortex. Trends in Cognitive Sciences 2002,6(1):9–16. 10.1016/S1364-6613(00)01817-9

    Google Scholar 

  28. Hubel DH, Wiesel TN: Receptive fields, binocular interaction, and functional architecture in the cat's visual cortex. Journal of Physiology 1962,160(1):106–154.

    Google Scholar 

  29. Morrone MC, Burr DC: Feature detection in human vision: a phase-dependent energy model. Proceedings of the Royal Society of London. Series B. Biological Sciences 1988,235(1280):221–245. 10.1098/rspb.1988.0073

    Google Scholar 

  30. Tovée MJ: An Introduction to the Human Visual System. Cambridge University Press, Cambridge, UK; 1996.

    Google Scholar 

  31. Dragoi V, Sur M: Dynamic properties of recurrent inhibition in primary visual cortex: contrast and orientation dependence of contextual effects. Journal of Neurophysiology 2000,83(2):1019–1030.

    Google Scholar 

  32. Li Z: Contextual influences in V1 as a basis for pop out and asymmetry in visual search. Proceedings of the National Academy of Sciences of the United States of America 1999,96(18):10530–10535. 10.1073/pnas.96.18.10530

    Google Scholar 

  33. Li Z: Visual segmentation by contextual influences via intracortical interactions in primary visual cortex. Network: Computation in Neural Systems 1999,10(2):187–212. 10.1088/0954-898X/10/2/305

    MATH  Google Scholar 

  34. Li Z: Pre-attentive segmentation in the primary visual cortex. Spatial Vision 2000,13(1):25–50. 10.1163/156856800741009

    Google Scholar 

  35. Hubel DH, Wiesel TN: Ferrier lecture. Functional architecture of macaque monkey visual cortex. Proceedings of the Royal Society of London. Series B: Biological Sciences 1977,198(1130):1–59. 10.1098/rspb.1977.0085

    Google Scholar 

  36. Livingstone MS, Hubel DH: Anatomy and physiology of a color system in the primate visual cortex. Journal of Neuroscience 1984,4(1):309–356.

    Google Scholar 

  37. Blasdel G, Campbell D: Functional retinotopy of monkey visual cortex. Journal of Neuroscience 2001,21(20):8286–8301.

    Google Scholar 

  38. Landisman CE, Ts'o DY: Color processing in macaque striate cortex: relationships to ocular dominance, cytochrome oxidase, and orientation. Journal of Neurophysiology 2002,87(6):3126–3137.

    Google Scholar 

  39. De Valois RL, Albrecht DG, Thorell LG: Spatial frequency selectivity of cells in macaque visual cortex. Vision Research 1982,22(5):545–559. 10.1016/0042-6989(82)90113-4

    Google Scholar 

  40. Gazzaniga MS, Ivry R, Mangun GR: Fundamentals of Cognitive Neuroscience. W. W. Norton, New York, NY, USA; 1998.

    Google Scholar 

  41. Freeman RD: Cortical columns: a multi-parameter examination. Cerebral Cortex 2003,13(1):70–72. 10.1093/cercor/13.1.70

    Google Scholar 

  42. Martin KAC: From enzymes to visual perception: a bridge too far? Trends in Neurosciences 1988,11(9):380–387. 10.1016/0166-2236(88)90072-0

    Google Scholar 

  43. Felleman DJ, Van Essen DC: Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1991,1(1):1–47.

    Google Scholar 

  44. DeAngelis GC, Ghose GM, Ohzawa I, Freeman RD: Functional micro-organization of primary visual cortex: receptive field analysis of nearby neurons. Journal of Neuroscience 1999,19(10):4046–4064.

    Google Scholar 

  45. Martinez LM, Alonso J-M: Construction of complex receptive fields in cat primary visual cortex. Neuron 2001,32(3):515–525. 10.1016/S0896-6273(01)00489-5

    Google Scholar 

  46. Ringach DL, Hawken MJ, Shapley R: Temporal dynamics and laminar organisation of orientation tuning in monkey primary visual cortex. Proceedings of European Conference on Visual Perception (ECVP '98), August 1998, Oxford, UK

    Google Scholar 

  47. De Valois RL, Yund EW, Hepler N: The orientation and direction selectivity of cells in macaque visual cortex. Vision Research 1982,22(5):531–544. 10.1016/0042-6989(82)90112-2

    Google Scholar 

  48. Edwards DP, Purpura KP, Kaplan E: Contrast sensitivity and spatial frequency response of primate cortical neurons in and around the cytochrome oxidase blobs. Vision Research 1995,35(11):1501–1523. 10.1016/0042-6989(94)00253-I

    Google Scholar 

  49. Godecke I, Maldonado P: Orientation selectivity in pinwheel centers in the visual cortex. https://doi.org/www.neuro.mpg.de/research/csn/pinwheel/

  50. Reid RC, Shapley RM: Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus. Nature 1992,356(6371):716–718. 10.1038/356716a0

    Google Scholar 

  51. Ts'o DY, Gilbert CD: The organization of chromatic and spatial interactions in the primate striate cortex. Journal of Neuroscience 1988,8(5):1712–1727.

    Google Scholar 

  52. Hawken MJ, Parker AJ: Contrast sensitivity and orientation selectivity in lamina IV of the striate cortex of old world monkeys. Experimental Brain Research 1984,54(2):367–372.

    Google Scholar 

  53. Bredfelt CE, Ringach DL: Dynamics of spatial frequency tuning in macaque V1. Journal of Neuroscience 2002,22(5):1976–1984.

    Google Scholar 

  54. Kulikowski JJ, Bishop PO: Linear analysis of the responses of simple cells in the cat visual cortex. Experimental Brain Research 1981,44(4):386–400.

    Google Scholar 

  55. Andrews BW, Pollen DA: Relationship between spatial frequency selectivity and receptive field profile of simple cells. Journal of Physiology 1979, 287: 163–176.

    Google Scholar 

  56. DeAngelis GC, Ohzawa I, Freeman RD: Receptive-field dynamics in the central visual pathways. Trends in Neurosciences 1995,18(10):451–458. 10.1016/0166-2236(95)94496-R

    Google Scholar 

  57. Simoncelli EP, Heeger DJ: A model of neuronal responses in visual area MT. Vision Research 1998,38(5):743–761. 10.1016/S0042-6989(97)00183-1

    Google Scholar 

  58. Gaska JP, Jacobson LD, Chen HW, Pollen DA: Space-time spectra of complex cell filters in the macaque monkey: a comparison of results obtained with pseudowhite noise and grating stimuli. Visual Neuroscience 1994,11(4):805–821. 10.1017/S0952523800003102

    Google Scholar 

  59. Gizzi MS, Katz E, Schumer RA, Movshon JA: Selectivity for orientation and direction of motion of single neurons in cat striate and extrastriate visual cortex. Journal of Neurophysiology 1990,63(6):1529–1543.

    Google Scholar 

  60. Guo K, Robertson R, Nevado A, Pulgarin M, Mahmoodi S, Young MP: Primary visual cortex neurons that contribute to resolve the aperture problem. Neuroscience 2006,138(4):1397–1406. 10.1016/j.neuroscience.2005.12.016

    Google Scholar 

  61. Priebe NJ, Lisberger SG, Movshon JA: Tuning for spatiotemporal frequency and speed in directionally selective neurons of macaque striate cortex. Journal of Neuroscience 2006,26(11):2941–2950. 10.1523/JNEUROSCI.3936-05.2006

    Google Scholar 

  62. Nelson SB: Temporal interactions in the cat visual system. I. Orientation-selective suppression in the visual cortex. Journal of Neuroscience 1991,11(2):344–356.

    Google Scholar 

  63. Carandini M, Movshon JA, Ferster D: Pattern adaptation and cross-orientation interactions in the primary visual cortex. Neuropharmacology 1998,37(4–5):501–511. 10.1016/S0028-3908(98)00069-0

    Google Scholar 

  64. Dragoi V, Sharma J, Sur M: Adaptation-induced plasticity of orientation tuning in adult visual cortex. Neuron 2000,28(1):287–298. 10.1016/S0896-6273(00)00103-3

    Google Scholar 

  65. Dragoi V, Sharma J, Sur M: Response plasticity in primary visual cortex and its role in vision and visuomotor behavior: bottom-up and top-down influences. IETE Journal of Research 2003,49(2–3):1–9.

    Google Scholar 

  66. Li Z, Atick JJ: Toward a theory of the striate cortex. Neural Computation 1994,6(1):127–146. 10.1162/neco.1994.6.1.127

    Google Scholar 

  67. Zhaoping L, Atick JJ: Efficient stereo coding in the multiscale representation. Network: Computation in Neural Systems 1994,5(2):157–174. 10.1088/0954-898X/5/2/003

    MATH  Google Scholar 

  68. Li Z: A theory of the visual motion coding in the primary visual cortex. Neural Computation 1996,8(4):705–730. 10.1162/neco.1996.8.4.705

    Google Scholar 

  69. Li Z: Understanding ocular dominance development from binocular input statistics. In The Neurobiology of Computation (Proceeding of Computational Neuroscience Conference 1994). Edited by: Bower J. Kluwer Academic, Dordrecht, The Netherlands; 1995:397–402.

    Google Scholar 

  70. Pollen DA, Ronner SF: Phase relationships between adjacent simple cells in the visual cortex. Science 1981,212(4501):1409–1411. 10.1126/science.7233231

    Google Scholar 

  71. Olshausen BA, Field DJ: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 1996,381(6583):607–609. 10.1038/381607a0

    Google Scholar 

  72. Hyvärinen A, Hoyer P: Emergence of phase- and shift-invariant features by decomposition of natural images into independent feature subspaces. Neural Computation 2000,12(7):1705–1720. 10.1162/089976600300015312

    Google Scholar 

  73. Ferster D, Miller KD: Neural mechanisms of orientation selectivity in the visual cortex. Annual Review of Neuroscience 2000, 23: 441–471. 10.1146/annurev.neuro.23.1.441

    Google Scholar 

  74. Kagan I, Gur M, Snodderly DM: Spatial organization of receptive fields of V1 neurons of alert monkeys: comparison with responses to gratings. Journal of Neurophysiology 2002,88(5):2557–2574. 10.1152/jn.00858.2001

    Google Scholar 

  75. Knierim JJ, Van Essen DC: Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. Journal of Neurophysiology 1992,67(4):961–980.

    Google Scholar 

  76. Kapadia MK, Ito M, Gilbert CD, Westheimer G: Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys. Neuron 1995,15(4):843–856. 10.1016/0896-6273(95)90175-2

    Google Scholar 

  77. Polat U, Mizobe K, Pettet MW, Kasamatsu T, Norcia AM: Collinear stimuli regulate visual responses depending on cell's contrast threshold. Nature 1998,391(6667):580–584. 10.1038/35372

    Google Scholar 

  78. Angelucci A, Levitt JB, Walton EJS, Hupé J-M, Bullier J, Lund JS: Circuits for local and global signal integration in primary visual cortex. Journal of Neuroscience 2002,22(19):8633–8646.

    Google Scholar 

  79. Barlow HB, Blakemore C, Pettigrew JD: The neural mechanism of binocular depth discrimination. Journal of Physiology 1967,193(2):327–342.

    Google Scholar 

  80. Sceniak MP, Ringach DL, Hawken MJ, Shapley R: Contrast's effect on spatial summation by macaque V1 neurons. Nature Neuroscience 1999,2(8):733–739. 10.1038/11197

    Google Scholar 

  81. Stettler DD, Das A, Bennett J, Gilbert CD: Lateral connectivity and contextual interactions in macaque primary visual cortex. Neuron 2002,36(4):739–750. 10.1016/S0896-6273(02)01029-2

    Google Scholar 

  82. Bosking WH, Zhang Y, Schofield B, Fitzpatrick D: Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. Journal of Neuroscience 1997,17(6):2112–2127.

    Google Scholar 

  83. Gilbert CD, Wiesel TN: Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex. Journal of Neuroscience 1989,9(7):2432–2422.

    Google Scholar 

  84. Das A, Gilbert CD: Topography of contextual modulations mediated by short-range interactions in primary visual cortex. Nature 1999,399(6737):655–661. 10.1038/21371

    Google Scholar 

  85. Burt PJ, Adelson EH: The Laplacian pyramid as a compact image code. IEEE Transactions on Communications 1983,31(4):532–540. 10.1109/TCOM.1983.1095851

    Google Scholar 

  86. Marr D: Vision. Freeman, San Francisco, Calif, USA; 1984.

    Google Scholar 

  87. Enroth-Cugell C, Robson JG: The contrast sensitivity of retinal Ganglion cells of the cat. Journal of Physiology 1966,187(3):517–552.

    Google Scholar 

  88. Rodieck RW: Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vision Research 1965,5(12):583–601. 10.1016/0042-6989(65)90033-7

    Google Scholar 

  89. Marr D, Hildreth E: Theory of edge detection. Proceedings of the Royal Society of London. Series B. Biological Sciences 1980,207(1167):187–217. 10.1098/rspb.1980.0020

    Google Scholar 

  90. Witkin AP: Scale-space filtering. Proceedings of the 8th International Joint Conference on Artificial Intelligence (IJCAI '83), August 1983, Karlsruhe, West Germany 1019–1021.

    Google Scholar 

  91. Koenderink JJ: The structure of images. Biological Cybernetics 1984,50(5):363–370. 10.1007/BF00336961

    MathSciNet  MATH  Google Scholar 

  92. Lindeberg T: Scale-Space Theory in Computer Vision. Kluwer Academic, Dordrecht, The Netherlands; 1994.

    MATH  Google Scholar 

  93. Lowe DG: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 2004,60(2):91–110.

    MathSciNet  Google Scholar 

  94. Vaidyanathan PP: Multirate Systems and Filter Banks. Prentice-Hall, Englewood Cliffs, NJ, USA; 1993.

    MATH  Google Scholar 

  95. Akansu AN, Haddad PR: Multiresolution Signal Decomposition: Transforms, Subbands, Wavelets. 2nd edition. Academic Press, New York, NY, USA; 2001.

    MATH  Google Scholar 

  96. Mallat S, Hwang WL: Singularity detection and processing with wavelets. IEEE Transactions on Information Theory 1992,38(2, part 2):617–643. 10.1109/18.119727

    MathSciNet  MATH  Google Scholar 

  97. Gabor D: Theory of communication. Journal of the Institute of Electrical Engineers 1946, 93: 429–457.

    Google Scholar 

  98. Marcelja S: Mathematical description of the responses of simple cortical cells. Journal of the Optical Society of America 1980,70(11):1297–1300. 10.1364/JOSA.70.001297

    MathSciNet  Google Scholar 

  99. Daugman JG: Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. Journal of the Optical Society of America. A, Optics, Image Science, and Vision 1985,2(7):1160–1169. 10.1364/JOSAA.2.001160

    Google Scholar 

  100. Daugman JG: High confidence visual recognition of persons by a test of statistical independence. IEEE Transactions on Pattern Analysis and Machine Intelligence 1993,15(11):1148–1161. 10.1109/34.244676

    Google Scholar 

  101. Granlund G, Knutsson H: Signal Processing for Computer Vision. Kluwer Academic, Dordrecht, The Netherlands; 1994.

    Google Scholar 

  102. Granlund GH: In search of a general picture processing operator. Computer Graphics and Image Processing 1978,8(2):155–173. 10.1016/0146-664X(78)90047-3

    Google Scholar 

  103. Bigun J, Granlund GH, Wiklund J: Multidimensional orientation estimation with applications to texture analysis and optical flow. IEEE Transactions on Pattern Analysis and Machine Intelligence 1991,13(8):775–790. 10.1109/34.85668

    Google Scholar 

  104. Daubechies I: The wavelet transform, time-frequency localization and signal analysis. IEEE Transactions on Information Theory 1990,36(5):961–1005. 10.1109/18.57199

    MathSciNet  MATH  Google Scholar 

  105. Mallat SG: Multifrequency channel decompositions of images and wavelet models. IEEE Transactions on Acoustics, Speech, and Signal Processing 1989,37(12):2091–2110. 10.1109/29.45554

    Google Scholar 

  106. Daubechies I: Orthonormal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics 1988, 41: 909–996. 10.1002/cpa.3160410705

    MathSciNet  MATH  Google Scholar 

  107. Simoncelli EP, Freeman WT, Adelson EH, Heeger DJ: Shiftable multiscale transforms. IEEE Transactions on Information Theory 1992,38(2, part 2):587–607. 10.1109/18.119725

    MathSciNet  Google Scholar 

  108. Freeman WT, Adelson EH: The design and use of steerable filters. IEEE Transactions on Pattern Analysis and Machine Intelligence 1991,13(9):891–906. 10.1109/34.93808

    Google Scholar 

  109. Perona P: Deformable kernels for early vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 1995,17(5):488–499. 10.1109/34.391394

    Google Scholar 

  110. Bovik AC, Clark M, Geisler WS: Multichannel texture analysis using localized spatial filters. IEEE Transactions on Pattern Analysis and Machine Intelligence 1990,12(1):55–73. 10.1109/34.41384

    Google Scholar 

  111. Kingsbury N: Image processing with complex wavelets. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 1999,357(1760):2543–2560. 10.1098/rsta.1999.0447

    MATH  Google Scholar 

  112. Fauqueur J, Kingsbury N, Anderson R: Multiscale keypoint detection using the dual-tree complex wavelet transform. Proceedings of the IEEE International Conference on Image Processing (ICIP '06), October 2006, Atlanta, Ga, USA

    Google Scholar 

  113. Kingsbury N: Rotation invariant local feature matching with complex wavelets. Proceedings of 14th European Signal Processing Conference (EUSIPCO '06), September 2006, Florence, Italy

    Google Scholar 

  114. Selesnick IW: The double-density dual-tree DWT. IEEE Transactions on Signal Processing 2004,52(5):1304–1314. 10.1109/TSP.2004.826174

    MathSciNet  MATH  Google Scholar 

  115. Portilla J, Strela V, Wainwright MJ, Simoncelli EP: Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Transactions on Image Processing 2003,12(11):1338–1351. 10.1109/TIP.2003.818640

    MathSciNet  MATH  Google Scholar 

  116. Bharath AA, Ng J: A steerable complex wavelet construction and its application to image denoising. IEEE Transactions on Image Processing 2005,14(7):948–959.

    MathSciNet  Google Scholar 

  117. Ng J, Bharath AA, Chow PKP: Extrapolative spatial models for detecting perceptual boundaries in colour images. to appear in International Journal of Computer Vision

  118. Seo JS, Yoo CD: Image watermarking based on invariant regions of scale-space representation. IEEE Transactions on Signal Processing 2006,54(4):1537–1549.

    MATH  Google Scholar 

  119. Martinez-Perez ME, Hughes AD, Stanton AV, Thom SA, Bharath AA, Parker KH: Retinal blood vessel segmentation by means of scale-space analysis and region growing. Proceedings of the 2nd International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI '99), September 1999, Cambridge, UK, Lecture Notes in Computer Science 1679: 90–97.

    Google Scholar 

  120. Martinez LM, Alonso J-M: Complex receptive fields in primary visual cortex. Neuroscientist 2003,9(5):317–331. 10.1177/1073858403252732

    Google Scholar 

  121. Dayan P, Abbott LF: Theoretical Neuroscience. MIT Press, Cambridge, Mass, USA; 2001.

    MATH  Google Scholar 

  122. Grossberg S, Mingolla E: Neural dynamics of perceptual grouping: textures, boundaries, and emergent segmentations. Perception and Psychophysics 1985,38(2):141–171. 10.3758/BF03198851

    Google Scholar 

  123. Zucker SW, Dobbins A, Iverson L: Two stages of curve detection suggest two styles of visual computation. Neural Computation 1989,1(1):68–81. 10.1162/neco.1989.1.1.68

    Google Scholar 

  124. Stemmler M, Usher M, Niebur E: Lateral interactions in primary visual cortex: a model bridging physiology and psychophysics. Science 1995,269(5232):1877–1880. 10.1126/science.7569930

    Google Scholar 

  125. Somers DC, Todorov EV, Siapas AG, Toth LJ, Kim D-S, Sur M: A local circuit approach to understanding integration of long-range inputs in primary visual cortex. Cerebral Cortex 1998,8(3):204–217. 10.1093/cercor/8.3.204

    Google Scholar 

  126. Li Z: A neural model of contour integration in the primary visual cortex. Neural Computation 1998,10(4):903–940. 10.1162/089976698300017557

    Google Scholar 

  127. Itti L, Koch C, Niebur E: A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 1998,20(11):1254–1259. 10.1109/34.730558

    Google Scholar 

  128. Bergen JR, Adelson EH: Early vision and texture perception. Nature 1988,333(6171):363–364. 10.1038/333363a0

    Google Scholar 

  129. Field DJ, Hayes A, Hess RF: Contour integration by the human visual system: evidence for a local 'association field'. Vision Research 1993,33(2):173–193. 10.1016/0042-6989(93)90156-Q

    Google Scholar 

  130. Treisman AM, Gelade G: A feature-integration theory of attention. Cognitive Psychology 1980,12(1):97–136. 10.1016/0010-0285(80)90005-5

    Google Scholar 

  131. Treisman AM, Gormican S: Feature analysis in early vision: evidence from search asymmetries. Psychological Review 1988,95(1):15–48.

    Google Scholar 

  132. Zhaoping L, Snowden RJ: A theory of a saliency map in primary visual cortex (V1) tested by psychophysics of colour-orientation interference in texture segmentation. Visual Cognition 2006,14(4–8):911–933.

    Google Scholar 

  133. Zhaoping L: V1 mechanisms and some figure-ground and border effects. Journal of Physiology, Paris 2003,97(4–6):503–515.

    Google Scholar 

  134. Schluppeck D, Engel SA: Color opponent neurons in V1: a review and model reconciling results from imaging and single-unit recording. Journal of Vision 2002,2(6):480–492.

    Google Scholar 

  135. Angelucci A, Levitt JB, Lund JS: Anatomical origins of the classical receptive field and modulatory surround field of single neurons in macaque visual cortical area V1. Progress in Brain Research 2002, 136: 373–388.

    Google Scholar 

  136. Lund JS, Angelucci A, Bressloff PC: Anatomical substrates for functional columns in macaque monkey primary visual cortex. Cerebral Cortex 2003,13(1):15–24. 10.1093/cercor/13.1.15

    Google Scholar 

  137. Reid RC: Vision. In Fundamental Neuroscience. Academic Press, New York, NY, USA; 2003:727–750.

    Google Scholar 

  138. Frégnac Y: Dynamics of functional connectivity in visual cortical networks: an overview. Journal of Physiology, Paris 1996,90(3–4):113–139. 10.1016/S0928-4257(97)81412-X

    Google Scholar 

  139. Chapman B, Stryker MP: Origin of orientation tuning in the visual cortex. Current Opinion in Neurobiology 1992,2(4):498–501. 10.1016/0959-4388(92)90186-O

    Google Scholar 

  140. Sengpiel F, Kind PC: The role of activity in development of the visual system. Current Biology 2002,12(23):R818–R826. 10.1016/S0960-9822(02)01318-0

    Google Scholar 

  141. Danckert J, Goodale MA: Blindsight: a conscious route to unconscious vision. Current Biology 2000,10(2):R64–R67. 10.1016/S0960-9822(00)00284-0

    Google Scholar 

  142. Tong F: Primary visual cortex and visual awareness. Nature Reviews Neuroscience 2003,4(3):219–229. 10.1038/nrn1055

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Ng.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Ng, J., Bharath, A.A. & Zhaoping, L. A Survey of Architecture and Function of the Primary Visual Cortex (V1). EURASIP J. Adv. Signal Process. 2007, 097961 (2006). https://doi.org/10.1155/2007/97961

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1155/2007/97961

Keywords