Skip to main content
  • Research Article
  • Open access
  • Published:

Subspace-Based Localization and Inverse Scattering of Multiply Scattering Point Targets

Abstract

The nonlinear inverse scattering problem of estimating the locations and scattering strengths or reflectivities of a number of small, point-like inhomogeneities (targets) to a known background medium from single-snapshot active wave sensor array data is investigated in connection with time-reversal multiple signal classification and an alternative signal subspace method which is based on search in high-dimensional parameter space and which is found to outperform the time-reversal approach in number of localizable targets and in estimation variance. A noniterative formula for the calculation of the target reflectivities is derived which completes the solution of the nonlinear inverse scattering problem for the general case when there is significant multiple scattering between the targets. The paper includes computer simulations illustrating the theory and methods discussed in the paper.

References

  1. Odendaal JW, Barnard E, Pistorius CWI: Two-dimensional superresolution radar imaging using the MUSIC algorithm. IEEE Transactions on Antennas and Propagation 1994,42(10):1386-1391. 10.1109/8.320744

    Article  Google Scholar 

  2. Rigling BD, Moses RL: Three-dimensional surface reconstruction from multistatic SAR images. IEEE Transactions on Image Processing 2005,14(8):1159-1171.

    Article  MathSciNet  Google Scholar 

  3. Sahin A, Miller EL: Object detection using high resolution near-field array processing. IEEE Transactions on Geoscience and Remote Sensing 2001,39(1):136-141. 10.1109/36.898675

    Article  Google Scholar 

  4. Ebihara S, Sato M, Niitsuma H: Super-resolution of coherent targets by a directional borehole radar. IEEE Transactions on Geoscience and Remote Sensing 2000,38(4):1725-1732. 10.1109/36.851971

    Article  Google Scholar 

  5. Prada C, Kerbrat E, Cassereau D, Fink M: Time reversal techniques in ultrasonic nondestructive testing of scattering media. Inverse Problems 2002,18(6):1761-1773. 10.1088/0266-5611/18/6/320

    Article  MathSciNet  MATH  Google Scholar 

  6. Shin HJ, Song S-J, Jang YH: Development of an intelligent ultrasonic phased array system for NDT of steel structures. In Proceedings of 28th Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE '01), July-August 2001, Brunswick, Me, USA Edited by: Thompson DO, Chimenti DE. 20: 1874–1881.

    Google Scholar 

  7. Li X, Davis SK, Hagness SC, van der Weide DW, Van Veen BD: Microwave imaging via space-time beamforming: experimental investigation of tumor detection in multilayer breast phantoms. IEEE Transactions on Microwave Theory and Techniques 2004,52(8, part 2):1856–1865. 10.1109/TMTT.2004.832686

    Article  Google Scholar 

  8. Scholz B: Towards virtual electrical breast biopsy: space-frequency MUSIC for trans-admittance data. IEEE Transactions on Medical Imaging 2002,21(6):588–595. 10.1109/TMI.2002.800609

    Article  Google Scholar 

  9. Thomas J-L, Fink MA: Ultrasonic beam focusing through tissue inhomogeneities with a time reversal mirror: application to transskull therapy. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 1996,43(6):1122–1129. 10.1109/58.542055

    Article  Google Scholar 

  10. Taylor JR: Scattering Theory: The Quantum Theory of Nonrelativistic Collisions. John Wiley & Sons, New York, NY, USA; 1972.

    Google Scholar 

  11. Ishimaru A: Wave Propagation and Scattering in Random Media. IEEE Press and Oxford University Press, New York, NY, USA; 1997.

    MATH  Google Scholar 

  12. Bal G, Pinaud O: Time-reversal-based detection in random media. Inverse Problems 2005,21(5):1593–1619. 10.1088/0266-5611/21/5/006

    Article  MathSciNet  MATH  Google Scholar 

  13. Devaney AJ, Marengo EA, Gruber FK: Time-reversal-based imaging and inverse scattering of multiply scattering point targets. Journal of the Acoustical Society of America 2005,118(5):3129–3138. 10.1121/1.2042987

    Article  Google Scholar 

  14. Devaney AJ: Super-resolution processing of multi-static data using time reversal and MUSIC. 2000.https://doi.org/www.ece.neu.edu/faculty/devaney (unpublished manuscript available in the web site )

    Google Scholar 

  15. Lev-Ari H, Devaney AJ: The time-reversal technique reinterpreted: subspace-based signal processing for multi-static target location. Proceedings of the 1st IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM '00), March 2000, Cambridge, Mass, USA 509–513.

    Google Scholar 

  16. Cheney M: The linear sampling method and the MUSIC algorithm. Inverse Problems 2001,17(4):591–595. 10.1088/0266-5611/17/4/301

    Article  MathSciNet  MATH  Google Scholar 

  17. Lehman SK, Devaney AJ: Transmission mode time-reversal super-resolution imaging. Journal of the Acoustical Society of America 2003,113(5):2742–2753. 10.1121/1.1566975

    Article  Google Scholar 

  18. Gruber FK, Marengo EA, Devaney AJ: Time-reversal imaging with multiple signal classification considering multiple scattering between the targets. Journal of the Acoustical Society of America 2004,115(6):3042–3047. 10.1121/1.1738451

    Article  Google Scholar 

  19. Schmidt RO: Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation 1986,34(3):276–280. 10.1109/TAP.1986.1143830

    Article  Google Scholar 

  20. Tsang L, Kong JA, Ding K-H, Ao CO: Scattering of Electromagnetic Waves: Numerical Simulations. John Wiley & Sons, New York, NY, USA; 2001.

    Book  Google Scholar 

  21. Snieder RK, Scales JA: Time-reversed imaging as a diagnostic of wave and particle chaos. Physical Review E 1998,58(5):5668–5675. 10.1103/PhysRevE.58.5668

    Article  Google Scholar 

  22. Shi G, Nehorai A: Maximum likelihood estimation of point scatterers for computational time-reversal imaging. Communications in Information and Systems 2005,5(2):227–256.

    Article  MathSciNet  MATH  Google Scholar 

  23. Marengo EA: Coherent multiple signal classification for target location using antenna arrays. Proceedings of National Radio Science Meeting, January 2005, Boulder, Colo, USA 169.

    Google Scholar 

  24. Marengo EA, Gruber FK: Single snapshot signal subspace method for target location. Proceedings of IEEE Antennas and Propagation International Symposium and USNC/URSI National Radio Science Meeting, July 2005, Washington, DC, USA 2A: 660–663.

    Google Scholar 

  25. Marengo EA: Single-snapshot signal subspace methods for active target location: part I: multiple scattering case. Proceedings of 2nd IASTED International Conference on Antennas, Radar, and Wave Propagation (ARP '05), July 2005, Banff, Alberta, Canada 161–166.

    Google Scholar 

  26. Marengo EA, Gruber FK: Single-snapshot signal subspace methods for active target location: part II: Born-approximable case. Proceedings of 2nd IASTED International Conference on Antennas, Radar, and Wave Propagation (ARP '05), July 2005, Banff, Alberta, Canada 173–179.

    Google Scholar 

  27. Prada C, Manneville S, Spoliansky D, Fink M: Decomposition of the time reversal operator: detection and selective focusing on two scatterers. Journal of the Acoustical Society of America 1996,99(4):2067–2076. 10.1121/1.415393

    Article  Google Scholar 

  28. Colton D, Kress R: Eigenvalues of the far field operator for the Helmholtz equation in an absorbing medium. SIAM Journal on Applied Mathematics 1995,55(6):1724–1735. 10.1137/S0036139993256114

    Article  MathSciNet  MATH  Google Scholar 

  29. Mueller JL, Siltanen S, Isaacson D: A direct reconstruction algorithm for electrical impedance tomography. IEEE Transactions on Medical Imaging 2002,21(6):555–559. 10.1109/TMI.2002.800574

    Article  Google Scholar 

  30. Ortega JM: Matrix Theory: A Second Course. Plenum Press, New York, NY, USA; 1987.

    Book  MATH  Google Scholar 

  31. Borcea L, Papanicolaou G, Tsogka C, Berryman J: Imaging and time reversal in random media. Inverse Problems 2002,18(5):1247–1279. 10.1088/0266-5611/18/5/303

    Article  MathSciNet  MATH  Google Scholar 

  32. Davis HT, Thomson KT: Linear Algebra and Linear Operators in Engineering with Applications in Mathematica. Academic Press, San Diego, Calif, USA; 2000.

    MATH  Google Scholar 

  33. Ren QS, Willis AJ: Extending MUSIC to single snapshot and on line direction finding applications. Proceedings of the Radar Edinburgh International Conference (Radar '97), October 1997, Edinburgh, UK 783–787.

    Google Scholar 

  34. Zhang M, Yang W, Li L: New method of constructing the projection matrix for array processing in single snapshot case. IEE Proceedings F: Radar and Signal Processing 1991,138(5):407–410. 10.1049/ip-f-2.1991.0053

    Google Scholar 

  35. Zhang M, Yang W, Li L: A novel approach of resolution enhancement with application in array processing of single snapshot. IEEE Transactions on Antennas and Propagation 1991,39(8):1125–1129. 10.1109/8.97346

    Article  Google Scholar 

  36. Shan T-J, Wax M, Kailath T: On spatial smoothing for direction-of-arrival estimation of coherent signals. IEEE Transactions on Acoustics, Speech, and Signal Processing 1985,33(4):806–811. 10.1109/TASSP.1985.1164649

    Article  Google Scholar 

  37. Evans JE, Johnson JR, Sun DF: Application of advanced signal processing techniques to angle of arrival estimation in ATC navigation and surveillance system. In Tech. Rep. 582. M.I.T. Lincoln Laboratory, Lexington, Mass, USA; June 1982.

    Google Scholar 

  38. O'Brien RT Jr., Kiriakidis K: Single-snapshot robust direction finding. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '04), May 2004, Montreal, Quebec, Canada 2: 93–96.

    MATH  Google Scholar 

  39. Hoctor RT, Kassam SA: The unifying role of the coarray in aperture synthesis for coherent and incoherent imaging. Proceedings of the IEEE 1990,78(4):735–752. 10.1109/5.54811

    Article  Google Scholar 

  40. Hoctor RT, Kassam SA: High resolution coherent source location using transmit/receive arrays. IEEE Transactions of Image Processing 1992,1(1):88–100. 10.1109/83.128033

    Article  Google Scholar 

  41. Hoctor RT, Kassam SA: Array redundancy for active line arrays. IEEE Transactions on Image Processing 1996,5(7):1179–1183. 10.1109/83.502396

    Article  Google Scholar 

  42. Prada C, Thomas J-L: Experimental subwavelength localization of scatterers by decomposition of the time reversal operator interpreted as a covariance matrix. Journal of the Acoustical Society of America 2003,114(1):235–243. 10.1121/1.1568759

    Article  Google Scholar 

  43. Miwa T, Arai I: Super-resolution imaging for point reflectors near transmitting and receiving array. IEEE Transactions on Antennas and Propagation 2004,52(1):220–229. 10.1109/TAP.2003.820975

    Article  Google Scholar 

  44. Fink M, Cassereau D, Derode A, et al.: Time-reversed acoustics. Reports on Progress in Physics 2000,63(12):1933–1995. 10.1088/0034-4885/63/12/202

    Article  Google Scholar 

  45. Prada C, Fink M: Eigenmodes of the time reversal operator: a solution to selective focusing in multiple-target media. Wave Motion 1994,20(2):151–163. 10.1016/0165-2125(94)90039-6

    Article  MathSciNet  MATH  Google Scholar 

  46. Proakis JG: Digital Communications. 3rd edition. McGraw-Hill, New York, NY, USA; 1995.

    MATH  Google Scholar 

  47. Telatar IE: Capacity of multi-antenna Gaussian channels. European Transactions on Telecommunications 1999,10(6):585–595. 10.1002/ett.4460100604

    Article  MathSciNet  Google Scholar 

  48. Bresler Y, Macovski A: Exact maximum likelihood parameter estimation of superimposed exponential signals in noise. IEEE Transactions on Acoustics, Speech, and Signal Processing 1986,34(5):1081–1089. 10.1109/TASSP.1986.1164949

    Article  Google Scholar 

  49. Bertero M: Linear inverse and ill-posed problems. In Advances in Electronics and Electron Physics. Volume 75. Edited by: Hawkes PW. Academic Press, New York, NY, USA; 1989:1–120.

    Google Scholar 

  50. Akaike H: A new look at the statistical model identification. IEEE Transactions on Automatic Control 1974,19(6):716–723. 10.1109/TAC.1974.1100705

    Article  MathSciNet  MATH  Google Scholar 

  51. Rissanen J: Modeling by shortest data description. Automatica 1978,14(5):465–471. 10.1016/0005-1098(78)90005-5

    Article  MATH  Google Scholar 

  52. Wax M, Kailath T: Detection of signals by information theoretic criteria. IEEE Transactions on Acoustics, Speech, and Signal Processing 1985,33(2):387–392. 10.1109/TASSP.1985.1164557

    Article  MathSciNet  Google Scholar 

  53. Wax M, Ziskind I: Detection of the number of coherent signals by the MDL principle. IEEE Transactions on Acoustics, Speech, and Signal Processing 1989,37(8):1190–1196. 10.1109/29.31267

    Article  Google Scholar 

  54. Valaee S, Kabal P: An information theoretic approach to source enumeration in array signal processing. IEEE Transactions on Signal Processing 2004,52(5):1171–1178. 10.1109/TSP.2004.826168

    Article  MathSciNet  MATH  Google Scholar 

  55. Berryman JG, Borcea L, Papanicolaou GC, Tsogka C: Statistically stable ultrasonic imaging in random media. Journal of the Acoustical Society of America 2002,112(4):1509–1522. 10.1121/1.1502266

    Article  MATH  Google Scholar 

  56. Liu D, Vasudevan S, Krolik J, Bal G, Carin L: Electromagnetic time-reversal imaging in changing media: experiment and analysis. submitted, 2005

  57. Chambers DH, Berryman JG: Analysis of the time-reversal operator for a small spherical scatterer in an electromagnetic field. IEEE Transactions on Antennas and Propagation 2004,52(7):1729–1738. 10.1109/TAP.2004.831323

    Article  Google Scholar 

  58. Bal G, Ryzhik L: Time reversal and refocusing in random media. SIAM Journal on Applied Mathematics 2003,63(5):1475–1498. 10.1137/S0036139902401082

    Article  MathSciNet  MATH  Google Scholar 

  59. Tsihrintzis GA, Devaney AJ: Maximum likelihood estimation of object location in diffraction tomography, part II: strongly scattering objects. IEEE Transactions on Signal Processing 1991,39(6):1466–1470. 10.1109/78.136562

    Article  Google Scholar 

  60. Zhao H: Analysis of the response matrix for an extended target. SIAM Journal on Applied Mathematics 2004,64(3):725–745. 10.1137/S0036139902415282

    Article  MathSciNet  MATH  Google Scholar 

  61. Hou S, Solna K, Zhao H: Imaging of location and geometry for extended targets using the response matrix. Journal of Computational Physics 2004,199(1):317–338. 10.1016/j.jcp.2004.02.010

    Article  MathSciNet  MATH  Google Scholar 

  62. Poon ASY, Brodersen RW, Tse DNC: Degrees of freedom in multiple-antenna channels: a signal space approach. IEEE Transactions on Information Theory 2005,51(2):523–536. 10.1109/TIT.2004.840892

    Article  MathSciNet  MATH  Google Scholar 

  63. Pierri R, Liseno A, Solimene R, Soldovieri F: Beyond physical optics SVD shape reconstruction of metallic cylinders. IEEE Transactions on Antennas and Propagation 2006,54(2, part 2):655–665. 10.1109/TAP.2005.863121

    Article  Google Scholar 

  64. Swindlehurst AL, Kailath T: A performance analysis of subspace-based methods in the presence of model error. II. Multidimensional algorithms. IEEE Transactions on Signal Processing 1993,41(9):2882–2890. 10.1109/78.236510

    Article  MATH  Google Scholar 

  65. Wong KM, Walker RS, Niezgoda G: Effects of random sensor motion on bearing estimation by the MUSIC algorithm. IEE Proceedings F: Communications, Radar and Signal Processing 1988,135(3):233–250. 10.1049/ip-f-1.1988.0031

    Google Scholar 

  66. Lev-Ari H: Efficient solution of linear matrix equations with application to multistatic antenna array processing. Communications in Information and Systems 2005,5(1):123–130.

    Article  MathSciNet  MATH  Google Scholar 

  67. Willis NJ: Bistatic Radar. Artech House, Boston, Mass, USA; 1991.

    Google Scholar 

  68. Horn RA, Johnson CR: Topics in Matrix Analysis. Cambridge University Press, Cambridge, UK; 1991.

    Book  MATH  Google Scholar 

  69. Kay SM: Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice-Hall, Englewood Cliffs, NJ, USA; 1993.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin A. Marengo.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Marengo, E.A., Gruber, F.K. Subspace-Based Localization and Inverse Scattering of Multiply Scattering Point Targets. EURASIP J. Adv. Signal Process. 2007, 017342 (2006). https://doi.org/10.1155/2007/17342

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1155/2007/17342

Keywords